

Technical guide

DHW heating

Central DHW heating

- with Viessmann DHW cylinders
- with Viessmann cylinder loading system with Viessmann freshwater module

Index

Index

1.	Sizing systems for DHW heating	1.1 Basics	4
		■ General information	4
		■ Irregular DHW demand	
		■ Constant DHW demand	
		■ High DHW demand	
		· · · · · · · · · · · · · · · · · · ·	
		■ Heating systems with special requirements for return temperatures	
		■ EDIS calculation program	
		■ Hydraulic connection	4
_			_
2.	Product information	2.1 Product description	
		■ Vitocell 100-H, type CHA	
		■ Vitocell 300-H, type EHA	5
		■ Vitocell 100-V, type CVA, CVAB, CVAB-A	5
		■ Vitocell 100-V, type CVWA	5
		■ Vitocell 300-V, type EVIA-A, EVIA-A+	
		■ Vitocell 100-W, type CUGB, CUGB-A	
		■ Vitocell 100-L, type CVLA and Vitotrans 222	
		■ Vitocell 100-B, type CVB, CVBB	
		■ Vitocell 100-U, type CVUB and Vitocell 100-W, type CVUB-A	
		■ Vitocell 300-B, type EVBA-A	
		■ Vitocell 340-M, types SVKA, SVKC and Vitocell 360-M, type SVSB	
		■ Vitotrans 353 (freshwater module)	7
		2.2 Overview of product features	7
		2.3 Intended use of Viessmann cylinders and Vitotrans	
		·	
3.	Selecting the cylinder type	3.1 Selection according to N ₁ factor	8
	· , ,,	■ General information	
		■ DHW cylinder selection	
			0
		■ Selection diagrams, cylinder loading system Vitocell 100-L, type CVLA, with	40
		Vitotrans 222	
		3.2 Selection according to continuous output	13
		4.4.0' :	
4.	Sizing	4.1 Sizing according to peak draw-off rate and DIN 4708-2	
		■ Application	
		■ Calculating the heat demand for DHW heating in residential buildings	
		Calculating the applicable draw-off demand per draw-off point to be considered	15
		■ Calculating the demand factor N	15
		■ Boiler supplement Z _K	
		■ Calculating the heat demand for DHW heating in commercial enterprises	
		■ Calculating the heat demand for DHW heating in hotels, guest houses and resi-	
		dential homes	18
		■ Calculating the heat demand for DHW heating in commercial saunas	
		■ Calculating the heat demand for DHW heating for sports halls	
		4.2 Sizing according to peak flow rate with reference to DIN 1988-300	
		■ Application	
		■ Calculating the DHW demand	22
		Calculating the required buffer volume	23
		4.3 Sizing according to continuous output	24
		■ Application	
		■ Determining the required DHW cylinder, example 1 (with constant flow tempera-	
		tures)	24
		,	24
		■ Determining the required DHW cylinder, example 2 (with a fixed heat source temporature differential)	24
		perature differential)	24
5.	Cylinder loading systems —	5.1 Applications and advantages	27
J.	Vitocell 100-L with Vitotrans 222	5.2 Function description of the cylinder loading system	
	VILOCEII 100-L WILII VILOLIAIIS 222		
		Operation with modulating flow temperature	
		Operation with constant flow temperature	
		Operation with a heat pump in conjunction with a heating lance for DHW heating	
		5.3 General formulas for calculating the cylinder loading system	
		■ Calculation based on water volume	31
		■ Calculation based on heat volume	31
		5.4 Sample calculation	32
		■ Calculation of the cylinder size based on water volume	
		Calculation of the cylinder size based on heat volume	
		= Salodidatori of the symmetri olize based on fleat volume	02
6.	Installation — DHW cylinders	6.1 Connection on the DHW side	33
		■ General information	

Index (cont.)

		6.3	■ Vitocell 100-H and Vitocell 300-H up to 200 l capacity ■ Vitocell 300-H, from 350 l capacity ■ Vitocell 100-V and Vitocell 300-V ■ Connection on the DHW side of cylinder banks with Vitocell 300-H DHW circulation pipes Connection of the DHW circulation pipe with cylinder banks ■ General information ■ Installing the Vitocell 100-V and Vitocell 300-V as a cylinder bank ■ Installing the Vitocell 100-V and Vitocell 300-V as a cylinder bank Connection on the heating side ■ Connection on the heating side without return temperature limit ■ Connection on the heating side with return temperature limit	34 35 36 37 38 38 38 40 40
7.	Installation — cylinder loading system	7.1	Connections	
8.	Appendix	8.2	Questionnaire regarding the sizing of DHW cylinders DHW cylinders in DHW heating systems Checklist for heat exchanger enquiries/sizing Intended use: Water/water Checklist for heat exchanger enquiries/sizing Intended use: Steam/water	46 48 48 49
9.	Keyword index			50

Sizing systems for DHW heating

1.1 Basics

General information

When sizing DHW heating systems, 2 main principles must be taken into consideration: For reasons of hygiene, size the volume of the DHW heating system so that it is as small as possible. However, for reasons of convenience, it should be as large as required. This means that the system must be designed as accurately as possible.

In practice, various approaches are taken:

- For residential buildings, systems are often configured in accordance with DIN 4708 Part 2. Taking into account the sanitary amenities of the individual apartments/residential units, the occupancy/ user rate and utilisation factors, the demand factor N can be deter-
- Systems operating according to the instantaneous water heater principle, e.g. freshwater modules, may also be sized according to peak flow rate with reference to DIN 1988-300.

Irregular DHW demand

Examples:

- Schools
- Trading estates
- Hotels
- Sports complexes with shower units

For buildings with irregular demand, sizing is often carried out via the peak output/maximum draw-off rate over 10 min. The DHW heating system should not be oversized, but at the same time, it is also essential to consider the heat-up time for the DHW cylinder until the next peak in demand occurs. The available heating and transfer output must be enough to ensure that the DHW can be adequately heated in the time between the peaks in demand.

Constant DHW demand

Examples:

- Food processing plants
- Swimming baths

For applications with constant demand for DHW, the DHW heating system is sized according to the constant demand of the consumer (continuous output). The size of the heat exchanger and the available heating output are crucial factors.

High DHW demand

Example:

■ Cylinder loading systems

For extremely high demands, size the DHW heating system according to both the peak output and the continuous output.

Heating systems with special requirements for return temperatures

Example:

■ District heating systems

If special consideration must be given to the return temperatures of the heating system, it is practical to size it according to the continuous output.

EDIS calculation program

For reliable sizing of DHW systems, Viessmann provides free EDIS software. This can be used for calculations for both residential buildings (to DIN 4708-2) and non-residential buildings (e.g. hotels, army barracks, industrial enterprises). Various complementary calculation processes are used.

Hydraulic connection

The following are important for safe and reliable operation of the DHW heating system:

- Sizing of the DHW cylinder
- Hydraulic connection of the DHW cylinder
- Overall system operation

The following are important for hygienic operation of the DHW heating system:

- Correct operating temperature
- Design of the DHW circulation pipe
- Connection of the DHW circulation pipe to the DHW cylinder

Specifically observe:

- DVGW Code of Practice W 551
- TRWI (DIN 1988)
- Valid Drinking Water Ordinance [Germany] (TrinkwV)
- Directive 98/83/EC of the Council of the European Union

Product information

2.1 Product description

Vitocell 100-H, type CHA

130, 160 and 200 I capacity, horizontal, enamelled, internal indirect coil

Horizontal DHW cylinder with internal indirect coil.

Cylinder and internal indirect coil made from steel, corrosion protection through Ceraprotect enamel coating and protective magnesium anode

The DHW cylinders feature all-round thermal insulation enclosed within an epoxy-coated sheet steel casing in a Vitosilver finish.

Vitocell 300-H, type EHA

160, 200, 350 and 500 I capacity, horizontal, made from stainless steel, internal indirect coil

Horizontal DHW cylinder made from stainless steel with internal indirect coil.

The DHW cylinders feature all-round thermal insulation enclosed within an epoxy-coated sheet steel casing in a Vitosilver finish.

Cylinder banks

Vitocell 300-H, 350 and 500 I capacity can be combined with on-site manifolds for the heating water and DHW sides to form cylinder banks (700 I, 1000 I, 1500 I).

The DHW cylinders are supplied as individual units for easy installation and handling.

Vitocell 100-V, type CVA, CVAB, CVAB-A

160, 200 and 300 I capacity, vertical, enamelled, internal indirect coil

Vertical DHW cylinder with internal indirect coil.

Cylinder and internal indirect coil made from steel, corrosion protection through Ceraprotect enamel coating and protective magnesium anode.

The DHW cylinders feature all-round thermal insulation enclosed within an epoxy-coated sheet steel casing; colour: Vitosilver or Vitopearlwhite (160 I, 200 I), or white (300 I).

500, 750 and 950 I capacity, vertical, enamelled, internal indirect coil

Vertical DHW cylinder with internal indirect coil.

Cylinder and internal indirect coil made from steel, corrosion protection through Ceraprotect enamel coating and protective magnesium anode.

The DHW cylinders feature all-round thermal insulation in Vitosilver. The removable thermal insulation is supplied separately.

Cylinder banks

The Vitocell 100-V with 300 and 500 I capacity can be combined with manifolds for the heating water and DHW sides to form cylinder banks. Ready-to-fit manifolds are available as accessories.

The Vitocell 100-V with 750 and 950 I capacity can be combined with on-site manifolds for the heating water and DHW sides to form cylinder banks.

The DHW cylinders are supplied as individual units for easy installation and handling.

Vitocell 100-V, type CVWA

300, 390 and 500 I capacity, vertical, enamelled, internal indirect coil

Vertical DHW cylinder with large internal indirect coil, especially for DHW heating in conjunction with heat pumps.

Cylinder and internal indirect coil made from steel, corrosion protection through Ceraprotect enamel coating and protective magnesium anode

300 I capacity

The DHW cylinders feature all-round thermal insulation enclosed within an epoxy-coated sheet steel casing in Vitosilver or white

390 and 500 I capacity

The DHW cylinders feature all-round thermal insulation; colour: Vitosilver or white. The removable thermal insulation is supplied separately.

Vitocell 300-V, type EVIA-A, EVIA-A+

160, 200 and 300 I capacity, vertical, made from stainless steel, internal indirect coil

Vertical DHW cylinder made from stainless steel with internal indirect coil.

The DHW cylinders feature all-round thermal insulation enclosed within an epoxy-coated sheet steel casing in a Vitosilver or white finish

Vitocell 300-V, type EVIA-A, 160, 200 and 300 I capacity:

 Vacuum-insulated panel in cylinder jacket for energy efficiency class A

Vitocell 300-V, type EVIA-A+, 160 and 200 I capacity:

■ Vacuum-insulated panel in cylinder jacket and cylinder cover for energy efficiency class A+

500 I capacity, vertical, made from stainless steel, internal indirect coil

Vertical DHW cylinder made from stainless steel with internal indirect coil.

The DHW cylinders feature all-round thermal insulation in Vitosilver. The removable thermal insulation is supplied separately.

Cylinder banks

The Vitocell 300-V with 300 and 500 I capacity can be combined with manifolds for the heating water and DHW sides to form cylinder banks. Ready-to-fit manifolds are available as accessories. The DHW cylinders are supplied as individual units for easy installation and handling.

Product information (cont.)

Vitocell 100-W, type CUGB, CUGB-A

120 and 150 I capacity, vertical, enamelled, internal indirect coil Vertical DHW cylinder with internal indirect coil especially for installation below a wall mounted gas boiler. Cylinder and internal indirect coil made from steel, corrosion protection through Ceraprotect enamel coating and protective magnesium anode.

The DHW cylinders feature all-round thermal insulation enclosed within an epoxy-coated sheet steel casing; colour: Vitopearlwhite.

Vitocell 100-L, type CVLA and Vitotrans 222

500, 750 and 950 I capacity, cylinder loading system, enamelled Vertical DHW cylinder for connecting an external heat exchanger

Steel loading cylinder, Ceraprotect enamel coating and protective magnesium anode for anti-corrosion protection.

The loading cylinders feature all-round thermal insulation in Vitosilver. The removable thermal insulation is supplied separately.

Vitotrans 222

Heat exchanger set comprising plate heat exchanger with thermal insulation, cylinder loading pump, heating water pump and line regulating valve.

Vitocell 100-B, type CVB, CVBB

300 I capacity, vertical, enamelled, for solar DHW heating Vertical DHW cylinder with 2 internal indirect coils for dual mode DHW heating

Cylinder and internal indirect coil made from steel, corrosion protection through Ceraprotect enamel coating and protective magnesium anode

The DHW cylinders feature all-round thermal insulation enclosed within an epoxy-coated sheet steel casing in Vitosilver or Vitopearlwhite.

400, 500, 750 and 950 I capacity, vertical, enamelled, for solar DHW heating

Vertical DHW cylinder with 2 internal indirect coils for dual mode DHW heating.

Cylinder and internal indirect coil made from steel, corrosion protection through Ceraprotect enamel coating and protective magnesium

The DHW cylinders feature all-round thermal insulation in Vitosilver. The removable thermal insulation is supplied separately.

Vitocell 100-B, type CVB, 400 I capacity:

■ Also available in white.

Vitocell 100-U, type CVUB and Vitocell 100-W, type CVUB-A

300 I capacity, vertical, enamelled, for solar DHW heating

Vertical DHW cylinder with 2 internal indirect coils for dual mode DHW heating.

Cylinder and internal indirect coil made from steel, corrosion protection through Ceraprotect enamel coating and protective magnesium anode

The DHW cylinders feature all-round thermal insulation enclosed within an epoxy-coated sheet steel casing in Vitosilver or Vitopearlwhite

Vitocell 100-U, type CVUB:

■ With fitted Solar-Divicon and Vitosolic 100 solar control unit, type SD1, or electronics module SDIO/SM1A

Vitocell 100-W, type CVUB-A:

- With fitted Solar-Divicon and electronics module SDIO/SM1A
- Vacuum-insulated panel for minimum standby losses
- Only available in Vitopearlwhite.

Vitocell 300-B, type EVBA-A

300 I capacity, vertical, made of stainless steel, for solar DHW heating

Vertical DHW cylinder made of stainless steel, with 2 internal indirect coils for dual mode DHW heating.

The DHW cylinders feature all-round thermal insulation enclosed within an epoxy-coated sheet steel casing in a Vitosilver finish.

Additionally:

■ Vacuum-insulated panel in cylinder jacket for energy efficiency class A

500 I capacity, vertical, made of stainless steel, for solar DHW heating

Vertical DHW cylinder made of stainless steel, with 2 internal indirect coils for dual mode DHW heating.

The DHW cylinders feature all-round thermal insulation in Vitosilver. The removable thermal insulation is supplied separately.

Vitocell 340-M, types SVKA, SVKC and Vitocell 360-M, type SVSB

400, 750 and 950 I capacity

Multi mode heating water buffer cylinder for hygienic DHW heating in continuous operation with internal indirect coil made from a high alloy corrugated stainless steel pipe.

With all-round thermal insulation in Vitosilver. The removable thermal insulation is supplied separately.

Additionally with Vitocell 360-M:

■ Stratification system for stratification of solar heat in relation to temperature. This makes DHW heated by solar energy available very quickly.

Product information (cont.)

Additionally with 750 and 950 I:

With a solar indirect coil for solar DHW heating and central heating backup

Vitotrans 353 (freshwater module)

Draw-off rate*1 25 l/min, 48 l/min, 68 l/min

Freshwater module for hygienic DHW heating in accordance with the instantaneous water heater principle.

Available for wall mounting as type PBSA, PBMA/PBMA-S and PBLA/PBLA-S or as type PZSA and PZMA/PZMA-S for installation on heating water buffer cylinders Vitocell 100-E, Vitocell 120-E, Vitocell 140-E and Vitocell 160-E.

- Freshwater modules of the type for installation on the heating water buffer cylinder include a DHW circulation pump and a diverter valve for directed return stratification (also available for wall mounting as an option).
- All pumps are highly efficient.
- With types PBMA/PBMA-S (48 l/min) and PBLA/PBLA-S (68 l/min), cascades with up to 4 identical modules are possible.
- Types PBMA-S, PBLA-S and PZMA-S are equipped with a stainless steel brazed heat exchanger.

2.2 Overview of product features

Cylinder		Nomin	al ca-		Material		Ver	sion	Heat 6	Heat exchanger	
			pacity in I								
	Type	of	to	Stainless	Enamel-	Steel	Horizontal	Vertical	Number	Sep. DHW	
				steel	led	(buffer)				coil	
Vitocell 100-H	CHA	130	200		X		X		1		
Vitocell 300-H	EHA	160	500	Х			X		1		
Vitocell 100-V	CVA	160	950		X			Х	1		
	CVAB										
	CVAB-A										
Vitocell 100-V	CVWA	300	500		Х			Х	1		
Vitocell 300-V	EVIA-A	160	500	Х				Х	1		
	EVIA-A+										
Vitocell 100-W	CUGB	120	150		Х			Х	1		
	CUGB-A										
Vitocell 100-L	CVLA	500	950		X			Х			
Vitocell 100-B	CVB	300	950		Х			Х	2		
	CVBB										
Vitocell 100-U	CVUB	300	300		Х			Х	2		
	CVUB-A										
Vitocell 300-B	EVBA-A	300	500	Х				Х	2		
Vitocell 340-M	SVKA	400	400	Х		Х		Х	1	X	
	SVKC	750	950	Х		Х		Х	1	X	
Vitocell 360-M	SVSB	750	950	Х		Х		Х	1	X	

2.3 Intended use of Viessmann cylinders and Vitotrans

The appliance is intended to be installed and operated only in sealed unvented systems that comply with EN 12828 / DIN 1988, or solar thermal systems that comply with EN 12977, with due attention paid to the associated installation, service and operating instructions. DHW cylinders are designed to store and heat only water of potable quality. Heating water buffer cylinders are designed to hold only water of potable quality.

The Vitotrans 353 is intended exclusively for potable water quality according to our specifications in the Viessmann brochure "TopTechnik Vitotrans 353 freshwater modules".

Intended use presupposes that a fixed installation in conjunction with permissible, system-specific components has been carried out.

Commercial or industrial usage for purposes other than heating a building or DHW shall be deemed inappropriate.

Any usage beyond this must be approved by the manufacturer in each individual case.

Incorrect usage or operation of the appliance (e.g. the appliance being opened by the system user) is prohibited and results in an exclusion of liability.

Incorrect usage also applies if the components in the system are modified from their intended use (e.g. through direct DHW heating in the collector).

Adhere to statutory regulations, especially concerning the hygiene of potable water.

Selecting the cylinder type

3.1 Selection according to N_L factor

General information

The detailed specification and performance parameters for the DHW cylinder can be found in the datasheets. The following tables help with initial selection.

DHW cylinder selection

The calculated demand factor N (see from page 13) is used to select the DHW cylinder performance factor N_L ($N_L \ge N$), which can be found in the first column of the following selection diagrams. DHW cylinders that have a corresponding performance factor are marked grey.

Example:

DHW heating in a two-family house in conjunction with a solar thermal system

Demand factor N = 2.3 (1)

Selection: Vitocell 100-B, 400 I 2 (from Vitocell 100 selection diagram) or Vitocell 300-B, 300 I 2 (from Vitocell 300 selection diagram).

In the top line, the flow temperature of 70 °C 3 required for this output can now be read for Vitocell 100-B, 400 I with a performance factor N_L = 2.5 or of 90 °C 3 for Vitocell 300-B, 300 I with a performance factor $N_L = 2.4$.

The selection of the DHW cylinder should be checked using the specification in the datasheet.

Vitocell 100 selection diagram - Part 1

N _L	Vit	ocell 100-l	Н	Vit	ocell 100-\	/	Vit	ocell 100-	В	Vit	ocell 100-l	
	13	30 to 200 I		10	60 to 500 I		3(00 to 950	I		300 I	
								Upper indirect coil			r indirect o	coil
	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C
							3					
1.0	130 I						1					
1.2		130 I										
1.4			130 I				300 I			300 I		
1.6	160 I							300 I	300 I		300 I	300 I
1.8												
2.0		160 I										
2.2			160 I	160 I								
2.3 ①							2					
2.4	200 I				160 I		400 I					
2.6						160 I						
2.8												
3.0								400 I	400 l			
3.2												
3.4		200 I		200 I								
3.6			200 I									
3.8					200 I							
4.0						200 I						
4.2 4.4												
4.4												
4.6												
4.8												
5.0							500 I					
5.2												
5.4 5.6												
5.6												
5.8												
6.0								500 I	500 l			
6.2												
6.4												
6.6												
6.8												

1) to 3) Selection example

$\overline{N_L}$	00 selection diagram - Part 2 Vitocell 100-H			Vi	tocell 100-	·V	Vit	ocell 100-	В	Vit	ocell 100-	J
	130 to 200 I			160 to 500 I				00 to 950 er indirect		Unna	300 I er indirect	ooil
	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C
7.0	+ ., ,						750					
7.2												
7.4												
7.4 7.5				CVWA 300 I								
7.6				0001								
7.8												
8.0								750 I	750 I			
8.2												
8.4												
8.5					CVWA 300 I							
8.6				CVAA								
				300 1								
8.8												
9.0												
9.2					CVAA 300 I							
9.4						CVWA 300 I						
9.5												
9.6						CVAA 300 I						
9.8						0001						
10.0				CVWA 390 I			950 I					
11.0				0001				950 I	950 I			
11.3					CVWA 390 I							
12.0												
12.6						CVWA 390 I						
13.0						0001						
13.3				CVWA 500 I								
14.0												
14.9					CVWA 500 I							
15.0												
16.0				CVA 500 I								
16.5				0001		CVWA 500 I						
17.0						3001						
18.0												
19.0					CVA							
					500 1							
20.0												
21.0						CVA 500 I						

Vitocell 100 selection diagram - Part 3

N _L	Vit	ocell 100-H			ocell 100-V	/	Vit	ocell 100-E	3	Vit	ocell 100-U	
				7	50 to 950 I							
Γ	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C
22.0												
23.0												
24.0												
25.0				750 I								
26.0												
27.0												
28.0												
29.0												
30.0												
31.0												
32.0					750 I							
33.0												
34.0												
35.0												
36.0												
37.0												
38.0						750 I						
39.0				950 I								
40.0												
41.0												
42.0					950 I							
43.0												
44.0						950 I						

Vitocell 300 selection diagram

N_L	Vite		Vite	ocell 300-V		Vi	tocell 300-B		
	160 to 500 I				60 to 500 I		30	00 and 500 I	
							Upp	er indirect co	il
	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C	70 °C	80 °C	90 °C
1.0									
1.2									i
1.4									i
1.6									Ī
1.8	160 I								
2.0							300 I		
2.2		160 I		160 I				300 I	
2.3 ①									2
2.4			160 I						300 I
2.6									
2.8									
3.0					160 I				
3.2									
3.4	200 I					160 I			
3.6									
3.8									
4.0									
4.2									
4.4									
4.6				200 I					
4.8									
5.0		200 I							
5.2									
5.4									
5.6					200 I				
5.8									
6.0							500 l		
6.2									
6.4			2001			2001			
6.6			200 I			200 I		500 I	
6.8									500.1
7.0									500 I
9.5				300 I					
9.6	+			3001					
9.8	+								
10.0	350 I				300 I	300 I			
11.0	3301				3001	3001			
12.0	+ +	350 I	350 I			+			
13.0	+ +	3301	3301			+			
14.0	+								
15.0	+								
16.0	+								
17.0	+ +			500 I					
18.0	+ +			3001					
19.0	500 I				500 I	+			
20.0	3001				5501	+			
21.0	+ +				- 	500 I			
22.0	+ +	500 I							
23.0		3301							
24.0	1		500 I						

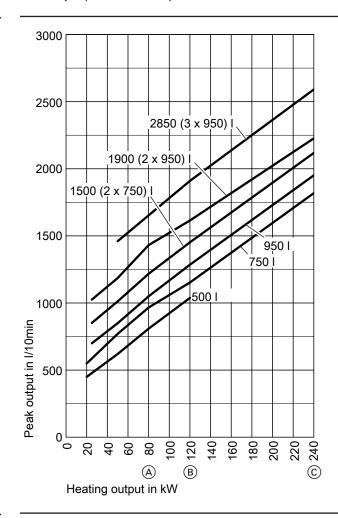
① to ③ Selection example

Selection diagrams, cylinder loading system Vitocell 100-L, type CVLA, with Vitotrans 222

Performance factor N_I

300 250 200 2850 (3 x 950) I 150 1900 (2 x 950) 1500 (2 x 750) I 100 Performance factor NL 950 I 750 I 500 I 120 9 8 9 140 160 180 200 220 B (A) Heating output in kW

- (A) Vitotrans 222, up to 80 kW(B) Vitotrans 222, up to 120 kW
- © Vitotrans 222, up to 240 kW


Information on performance factor $N_{\text{\tiny L}}$

The performance factor N_{L} depends on the cylinder storage temperature $T_{\text{cyl}}.$

Standard values

- \blacksquare T_{cyl} = 60 °C \rightarrow 1.0 × N_L
- \blacksquare T_{cyl} = 55 °C \rightarrow 0.75 × N_L
- \blacksquare T_{cyl} = 50 °C \rightarrow 0.55 × N_L
- \blacksquare T_{cyl} = 45 °C \rightarrow 0.3 × N_L

Peak output (over 10 minutes)

- A Vitotrans 222, up to 80 kW
- B Vitotrans 222, up to 120 kW
- © Vitotrans 222, up to 240 kW

Information regarding peak output

The peak output during a 10 minute period depends on the cylinder storage temperature T_{cyl} .

Standard values

- \blacksquare T_{cyl} = 60 °C \rightarrow 1.0 × peak output
- \blacksquare T_{cyl} = 55 °C \rightarrow 0.75 × peak output
- \blacksquare T_{cyl} = 50 °C \rightarrow 0.55 × peak output
- \blacksquare T_{cyl} = 45 °C \rightarrow 0.3 × peak output

3.2 Selection according to continuous output

In accordance with the required heating from 10 to 45 $^{\circ}$ C or from 10 to 60 $^{\circ}$ C and the planned flow temperature, the relevant column in the following selection table is selected. The required continuous output (see from page 23) is found in the column and the cylinder type in the first column is read off.

Example:

DHW heating from 10 to 60 °C, flow temperature 70 °C 1 Required continuous output: 20 kW 2, enamelled DHW cylinder, adjacent in the first column 3: Vitocell 100-V 200 I or Vitocell 100-V, 300 I

The most suitable DHW cylinder is now selected based on the specification and the continuous output diagrams in the Vitocell datasheets.

Note

The stated continuous output is only achieved if the rated boiler heating output is greater than the continuous output.

When engineering systems with the specified or calculated continuous output, factor in a matching circulation pump.

Appliance	Туре	Capacity	DH	s output in IW heating		Conti	nuous outpi	ut in kW for	DHW heati	ng
			from	10 to 60 °C	;		from	10 to 45 °C		
Flow temperature	re		90 °C	80 °C	70 °C	90 °C	80 °C	70 °C	60 °C	50 °C
Horizontal DHW	cylinders			I					ļ	
Vitocell 100-H	CHA	130 I	27	20	14	28	23	19	14	_
		160 I	32	24	17	33	28	22	16	_
		200 I	38	29	19	42	32	26	18	_
Vitocell 300-H	EHA	160 I	28	23	15	32	28	20	14	_
		200 1	33	25	17	41	30	23	16	_
		350 I	70	51	34	80	64	47	33	_
		500 I	82	62	39	97	76	55	38	
DHW cylinders f	for wall mounte	ed boilers								
Vitocell 100-W	CUGB	120 I	_		_	_	24	_	_	_
	CUGB-A	150 I	_	-			24		_	_
Vertical DHW cy	linders	•	•	•	•	,	•		•	
Vitocell 100-V	CVAA	160 I	36	28	19	40	32	25	9	_
	CVAB-A	200 1	36	28	19	40	32	17	9	_
		3			2					
	CVAA	300 I	45	34	23	53	44	23	18	_
	CVA	500 I	53	44	33	70	58	32	24	_
	CVAA	750 I	94	75	54	109	91	73	54	33
		950 I	109	80	58	116	98	78	58	45
	CVWA	300 I	73	58	41	85	71	57	42	25
		390 1	85	67	48	98	82	66	49	29
		500 I	102	81	59	118	99	79	59	36
Vitocell 300-V	EVIA-A	160 I	39	31	22	46	38	30	22	13
	EVIA-A+	200 1	39	31	22	46	38	30	22	13
	EVIA-A	300 I	52	41	29	61	51	41	30	18
		500 I	59	46	33	69	58	46	34	20
Dual mode DHW	/ cylinders (up	per indirect of	coil)							
Vitocell 100-U	CVUB	3001	23	20	15	31	26	20	15	11
	CVUB-A									
Vitocell 100-B	CVBB	300 I	23	20	15	31	26	20	15	11
	CVB	400 1	36	27	18	42	33	25	17	10
		500 1	36	30	22	47	40	30	22	16
	CVBB	750 1	59	49	37	76	63	49	35	26
		950 1	67	56	42	90	75	58	41	31
Vitocell 300-B	EVBA-A	300 I	36	29	20	43	35	28	20	12
		500 1	49	38	27	57	48	38	28	16
Freshwater mod	lule		-			-	-		- [
Vitotrans 353	PBSA	T	108	88	65	81	81	81	61	39
	PZSA									
	PBMA/PBMA	A-S	195	164	127	146	146	146	117	79
	PZMA/PZMA	I								. •
	PBLA/PBLA-		277	233	181	203	203	203	166	113
	1. 22. 01 22/1	-		_00		_00	_00	_00	.00	

1 - 3 Selection example

Note

For more values, see the "Vitotrans 353" datasheet.

4.1 Sizing according to peak draw-off rate and DIN 4708-2

Application

For residential buildings, the DHW demand is calculated based on the demand factor N. The calculations are set out in DIN 4708-2 and described below. Based on the demand factor N, a DHW cylinder with a corresponding performance factor N_L is then selected $(N_L \ge N)$.

The performance factor N_L of a DHW cylinder can also be expressed as the peak output over 10 minutes. Systems for DHW heating are sized according to this "peak draw-off rate" if a specific volume of DHW has to be provided for a short period of time, after which a longer period of time is available to reheat the cylinder again. This may occur, e.g. in commercial enterprises or schools (intermittent operation). The 10-minute peak output is determined almost exclusively by the volume of water stored (cylinder capacity).

The performance factor N₁ and the maximum continuous output of the DHW cylinders is given in the tables from page 8. For the detailed specifications, performance characteristics and continuous output diagrams, see the datasheet for the relevant DHW cylinder.

Calculation program EDIS/DIN 4708-2

DHW cylinders can also be sized with the aid of the EDIS calculation program. The program sizes DHW cylinders on the basis of DIN 4708 for residential units and includes various calculation processes, e.g. for hotels, catering businesses, hospitals, retirement homes, campsites, sports halls.

You can obtain the Viessmann "EDIS" calculation program by contacting one of our sales offices.

Calculating the heat demand for DHW heating in residential buildings

This calculation is based on DIN 4708 "Central heat-water-installations" Part 2.

DIN 4708 is the basis for the standard calculation of the heat demand for central DHW heating systems in residential buildings. For the purposes of calculating the heat demand, a standard residential unit is defined as follows:

The standard residential unit is a dwelling based on statistical values, for which the demand factor N = 1 is as follows:

- Room factor r = 4 rooms
- Occupancy factor p = 3.5 people
- Draw-off demand w_v = 5820 Wh/draw-off volume for a bath

The following information is required to calculate the demand

- a) All sanitary equipment on all floors, e.g. from the building design drawing or details supplied by architect or client
- b) Number of living spaces (number of rooms) without ancillary rooms such as kitchen, hallway, bathroom and storage room, e.g. from the building design drawing or details supplied by architect or client
- c) Number of people per residential unit (occupancy factor). If the number of occupants for each residential unit cannot be ascertained, a statistical occupancy factor p can be calculated on the basis of the room factor r for the residential unit concerned using table 1.

Table 1

Room factor r	Occupancy factor p
1.0	2.0*2
1.5	2.0*2
2.0	2.0*2
2.5	2.3
3.0	2.7
3.5	3.1
4.0	3.5
4.5	3.9
5.0	4.3
5.5	4.6
6.0	5.0
6.5	5.4
7.0	5.6

Establishing the number of draw-off points to be taken into account when calculating the demand

The number of draw-off points must be taken into account when calculating the overall demand. This varies according to the specifications of the residential unit (basic or deluxe) and can be derived from tables 2 or 3.

Calculating the occupancy factor p

If the number of people per residential unit cannot be ascertained, this table can be used to calculate the occupancy factor p.

Table 2 - Residential unit with standard equipment level

Existing am	enities per residential unit	To be taken into account for calculating the demand
Room	Equipment	
Bathroom	1 bath 140 l (according to table 4, no. 1, on page 15)	1 bath 140 I (according to table 4, no. 1, on page 15)
	or	
	1 shower cubicle with/without mixer tap and standard shower	
	head	
	1 washbasin	Not taken into account
Kitchen	1 kitchen sink	Not taken into account

^{*2} If the residential building concerned mainly comprises residential units with 1 and 2 main rooms, increase the occupancy factor p by a

Table 3 - Residential unit with deluxe equipment level

Existing amenities per	residential unit	To be taken into account for calculating the demand
Room	Equipment	
Bathroom	Bath*3	As existing, according to table 4, no. 2 to 4
	Shower cubicle*3	As existing, incl. any additional facilities according to table 4, no. 6 or 7, if arranged
		to permit simultaneous use*4
	Washbasin*3	Not taken into account
	Bidet	Not taken into account
Kitchen	1 kitchen sink	Not taken into account
Guest room	Bath	Per guest room: As existing, according to table 4, no. 1 to 4, with 50 % of the draw-off demand w_{ν}
	or	As existing, incl. possible additional equipment as per table 4, no. 5 to 7, with 100 %
	Shower cubicle	of the draw-off demand w _v
	Washbasin	At 100 % of the draw-off demand w _v according to table 4 *5
	Bidet	At 100 % of the draw-off demand w _v according to table 4 ^{*5}

Calculating the applicable draw-off demand per draw-off point to be considered

Take the respective draw-off demand w_{ν} for the draw-off points included in the calculation of the demand factor N from table 4.

Table 4 - Draw-off demand w

No.	Sanitary equipment or draw-off point	DIN code	Draw-off volume per use or useful capacity in I	Draw-off demand w _v per use in Wh
1	Bath	NB1	140	5820
2	Bath	NB2	160	6510
3	Small bath and sit bath	KB	120	4890
4	Large bath (1800 mm × 750 mm)	GB	200	8720
5	Shower cubicle *6 with mixer tap and economy shower head	BRS	40*7	1630
6	Shower cubicle*6 with mixer tap and standard shower head*8	BRN	90*7	3660
7	Shower cubicle*6 with mixer tap and deluxe shower head*9	BRL	180 ^{*7}	7320
8	Washbasin	WT	17	700
9	Bidet	BD	20	810
10	Washbasin	HT	9	350
11	Kitchen sink	SP	30	1160

For baths with capacities that vary considerably, apply the draw-off demand w_v in accordance with formula $w_v = c \times V \times \Delta T$ in Wh and use it in the calculation ($\Delta T = 35$ K).

Calculating the demand factor N

In order to establish the heat demand for DHW to all residential units, it is first necessary to convert the data into the heat demand for DHW of the standard residential unit.

The following characteristics of the standard residential unit are agreed:

- 1. Room factor r = 4 rooms
- 2. Occupancy factor p = 3.5 people
- 3. Draw-off demand $w_v = 5820 \text{ Wh (for one bath)}$

The heat demand for DHW for the standard residential unit with 3.5 occupants \times 5820 Wh = 20370 Wh corresponds to the demand factor N = 1

N = total of the heat demand for DHW for all residential units to be supplied with DHW, divided by the heat demand for DHW for the standard residential unit

If several different shower cubicles are installed, at least one bath is assumed for the shower cubicle with the highest draw-off demand.

^{*3} Size different from standard equipment level.

^{*4} If no bath is installed, a bath is assumed instead of a shower cubicle as with the standard equipment (see table 4, no. 1) unless the draw-off demand of the shower cubicle exceeds that of the bath (e.g. deluxe shower).

^{*5} If no bath or shower cubicle is assigned to the guest room.

^{*6} To be included in calculations only if the bath and shower cubicle are in separate rooms, i.e. if simultaneous use is possible.

^{*7} Corresponding to 6 minutes in use.

^{*8} Fitting flow rate class A to EN 200.

^{*9} Fitting flow rate class C to EN 200.

$$N = \frac{\Sigma(n \cdot p \cdot v \cdot w_v)}{3.5 \cdot 5820}$$
$$= \frac{\Sigma(n \cdot p \cdot v \cdot w_v)}{20370}$$

= Number of similar residential units

= Occupancy factor per similar residential unit р

= Number of similar draw-off points per similar residential unit

= Draw-off demand in Wh

 $(n \cdot p \cdot v \cdot w_{\nu})$ must be calculated for each relevant draw-off point per similar residential unit.

Now use the calculated demand factor N to select the required DHW cylinder at the appropriate heating water flow temperature from the tables on pages 8 and 11. Select a DHW cylinder with an N_L factor at least equal to N.

The demand factor N is identical to the number of standard residential units in the building project.

It does not necessarily correspond to the actual number of residential units.

Example:

For a residential building project, design the DHW system on the basis of demand factor N.

The numbers of similar residential units, the room factor and the equipment level listed in table 5 have been taken from the building plans.

The occupancy factor p was determined using the room factor r and table 1 on page 14.

The number of draw-off points to be used in the design was calculated using table 2 on page 14 and table 3 on page 15.

Table 5

No. of residen- tial units	Room factor	Occupancy factor	Amenities in the residential unit	Apply for the demand calculation
n	r	р	Number, description	No. of draw-off points, description
4	1.5	2.0	1 shower cubicle with standard shower head 1 washbasin in the bathroom 1 sink in the kitchen	As per table 2 on page 14 1 shower cubicle (BRN)
10	3	2.7	1 bath 140 l 1 washbasin in the bathroom 1 sink in the kitchen	As per table 2 on page 14 1 bath (NB1)
2	4	3.5	1 shower cubicle with mixer tap and de- luxe shower head 1 shower cubicle with standard shower head (in a physically separate location) 1 washbasin in the bathroom 1 sink in the kitchen	As per table 3 on page 15 1 shower cubicle (BRL)
4	4	3.5	1 bath 160 l 1 shower cubicle with deluxe shower head in a separate room 1 washbasin in the bathroom 1 bidet 1 sink in the kitchen	As per table 3 on page 15 1 bath (NB2) 1 shower cubicle (BRL)
5	5	4.3	1 bath 160 l 1 washbasin in the bathroom 1 bidet 1 bath 140 l, in the guest room 1 washbasin in the guest room 1 sink in the kitchen	As per table 3 on page 15 1 bath (NB2) 1 bath (NB1) with 50 % of the draw-off demand w _v 1 washbasin (WT) 1 bidet (BD)

Form for calculating the heat demand for DHW heating in residential buildings

Calculating the demand of residential units with centralised supply Project no: Part no:

Calculating the demand factor N for determining the required DHW cylinder size

Project

Froject										
Occupancy	factor p based	d on statistical	values as per	table 5	5, page 16					
1	2	3	4	5	6	7	8	9	10	11
Sequential	Room fac-	No. of resi-	Occupancy		No. of draw-	off points to	consider			Comments
number of	tor	dential	factor		(per resident	tial unit)				
residential		units								
unit	r	n	р	n · p	No. of	Short	Draw-off	v·w _v	$n \cdot p \cdot v \cdot w_v$	
groups					draw-off	code	demand	in Wh	in Wh	
					points		W _v			
					V		in Wh			
1	1.5	4	2.0	8.0	1	NB1	5820	5820	46560	NB1 for
										BRN
2	3.0	10	2.7	27.0	1	NB1	5820	5820	157140	
3	4.0	2	3.5	7.0	1	BRL	7320	7320	51240	
					1	BRN	3660	3660	25620	
4	4.0	4	3.5	4.0	1	NB2	6510	6510	91140	
					1	BRL	7320	7320	102480	

Calculating the demand of residential units with centralised supply			Project no):						
systems						Part no:				
5	5.0	5	4.3	21.5	1	NB2	6510	6510	139965	
					(0.5)	NB1	5820	5820	62565	50 % w _v as
										per Tab. 3
										on page 15

$$\Sigma n_i = 25$$

$$\Sigma (n \cdot p \cdot v \cdot w_v) = 676710 \text{ Wh}$$

$$N = \frac{\Sigma(n \cdot p \cdot v \cdot w_v)}{3.5 \cdot 5820} = \frac{676710}{20370} = 33.2$$

Now use the calculated demand factor N = 33.2 to select the required DHW cylinder from the tables in the relevant datasheets at the available heating water flow temperature (e.g. 80 $^{\circ}\text{C})$ and a cylinder storage temperature of 60 $^{\circ}\text{C}$. Select a DHW cylinder with an N_L factor at least equal to N.

Note

The performance factor N_L varies subject to the following variables:

- Flow temperature
- Storage temperature
- Available or transferable output

For deviating operating conditions, modify the performance factor N_L from the values shown in the tables in the relevant datasheets.

Possible DHW cylinders:

■ From the Vitocell 300-H datasheet: Vitocell 300-H with 700 I capacity (N_L = 35) as cylinder bank comprising 2 x Vitocell 300-H, each with 350 I capacity

Boiler supplement Z_K

■ From the Vitocell 300-V datasheet:

Vitocell 300-V with 600 I capacity (N_L = 34.8) as cylinder bank comprising 2 × Vitocell 300-V, each with 300 I capacity

Selected DHW cylinder:

Demand factor N

2 × Vitocell 300-V, each with 300 I capacity.

Boiler supplement Z_K

According to DIN 4708-2 and VDI 3815, the rated heating output of a boiler must be increased by the boiler supplement Z_K to cover the DHW heating demand (see table 6).

Observe the explanations in DIN/VDI [or local regulations].

DIN 4708 specifies 3 main demands for the rated heating output of the heat source:

Demand 1

The performance factor must be at least equal to or greater than the demand factor:

 $N_L \ge N$

Demand 2

Only if the rated boiler heating output $\dot{\mathbf{Q}}_K$ or Φ_K is higher or at least equal to the continuous output, can the DHW cylinder deliver the performance factor N_L stated by the manufacturer:

$$\dot{Q}_{K} \ge \dot{Q}_{D} \text{ or } \Phi_{K} \ge \Phi_{D}$$

Demand 3

Heat generating systems used for both DHW and central heating must cover the additional output $Z_{\rm K}$ as well as the standard heat load $\Phi_{\rm HL\ buil.}$ EN 12831 (previously DIN 4701):

$$\Phi_{\mathsf{K}} \ge \Phi_{\mathsf{HL}\;\mathsf{buil.}} + \mathsf{Z}_{\mathsf{K}}$$

On the basis of DIN 4708-2, VDI 3815 is used for calculating a supplement to the rated boiler heating output as a function of the demand factor N and a minimum cylinder capacity (see table 6). It has proved successful in practice to take the boiler supplement into account according to the following relations:

$$\Phi_{\mathsf{K}} \ge \Phi_{\mathsf{HL}\;\mathsf{buil.}} \cdot \varphi + \mathsf{Z}_{\mathsf{K}}$$

 ϕ = Factor for utilisation of building heating (all rooms heated)

Number of residential units per building	ф
Up to 20	1
21 to 50	0.9
> 50	0.8

Table 6 - Boiler supplement Z_K

	in kW
1	3.1
	4.7
2 3 4 5 6 7	6.2
7	7.7
5	8.9
6	10.2
7	11.4
8	12.6
9	13.8
10	15.1
12	17.3
14	17.3
16	21.7
18	
	23.9
20	26.1
22	28.2
24	30.4
26	32.4
28	34.6
30	36.6
40	46.7
50	56.7
60	66.6
80	85.9
100	104.9
120	124.0
150	152.0
200	198.4
240	235.2
300	290.0

Note

In buildings with an extremely low heat load $\Phi_{HL\ buil}$, a check must be carried out to determine whether the output of the heat source, including supplement Z_K , is sufficient for the selected performance factor. It may be necessary to select a larger DHW cylinder.

Calculating the heat demand for DHW heating in commercial enterprises

1. Demand calculation

Sizing (cont.)

Allow for a suitable number of washing facilities (washing/shower units) for the type of business concerned (see the earlier DIN 18228, part 3, page 4).

Per 100 users (numbers in the most numerous shift), the washing facilities listed in table 7 are required.

Table 7 - Standard working conditions*10

Activity	Number of washing facilities per 100 users	Splitting the washing fa- cilities Washing facilities/shower units
Slightly dirty	15	_/_
Moderately dirty	20	2/1
Very dirty	25	1/1

2. Sizing the DHW heating system

The following example is used to illustrate how to size the DHW heating system.

Example:

Number of employees during the most numerous 150 employees shift: Working pattern: 2-shift operation Type of activity: Moderately dirty

Required DHW outlet temperature: 35 to 37 °C 60 °C Cylinder storage temperature: 10 °C Cold water inlet temperature: Heating water flow temperature: 90 °C

Calculating the DHW demand

Table 7 shows that for moderately dirty work, 20 washing facilities are required per 100 employees. The ratio of washbasins to shower units is 2:1.

Therefore, 20 washbasins and 10 shower units are required for 150 employees.

Table 8 - Consumption figures for washing facilities and shower units with a DHW outlet temperature of 35 to 37 °C

Consumption point	DHW vol- ume in I/min	Utilisation time in min	DHW consumption per use in
Washbasins with tap	5 to 12	3 to 5	30
Washbasins with spray head	3 to 6	3 to 5	15
Circular communal wash- basin for 6 people	approx. 20	3 to 5	75
Circular communal wash- basin for 10 people	approx. 25	3 to 5	75
Shower unit without changing cubicle	7 to 12	5 to 6*11	50
Shower unit with changing cubicle	7 to 12	10 to 15*12	80

The washing facilities (washbasin with spray head) are used by 120 employees (6 times in sequence) and the shower units (showers without changing cubicles) are used by 30 employees (3 times in

Using table 8, we arrive at the following DHW volume required:

- a) DHW demand of the washing facilities: 120 × 3.5 l/min × 3.5 min
- b) DHW demand of the showers: 30 × 10 l/min × 5 min = 1500 l Together, a) and b) result in a total DHW demand of 2970 I at approx. 36 °C water temperature for a utilisation period of approx. 25 minutes

Conversion to an outlet temperature of 45 °C results in:

$$V_{(45^{\circ}C)} = V_{(36^{\circ}C)} \cdot \frac{\Delta T_{(36^{\circ}C - 10^{\circ}C)}}{\Delta T_{(45^{\circ}C - 10^{\circ}C)}}$$
$$= 2970 \cdot \frac{26}{35} = 2206 \text{ I}$$

As 8 hours are available between the shifts for reheating the DHW cylinder, the cylinder capacity should be sized for storage purposes. For this, the details for the peak output (10-minute peak output) in the tables in the relevant datasheets for the DHW cylinders are used.

From the corresponding table in the Vitocell 300-V datasheet: For Vitocell 300-V with 500 I capacity and a heating water flow temperature = 90 °C, the peak output is 10/45 °C 634 I/10 min.

Number of DHW cylinders n = calculated total volume/selected peak output (10 min output) of the individual cylinder

$$n = \frac{2206}{634} = 3.5 \text{ pce}$$

Selected DHW cylinder:

4 × Vitocell 300-V, each with 500 I capacity.

Calculating the required heating output

7.5 hours are available for heating up the DHW cylinder; this gives a minimum connected load (i.e. boiler heating output) of:

$$\dot{Q}_A = \Phi_A = \frac{c \cdot V \cdot \Delta T_A}{Z_A}$$

$$= \frac{1 \cdot 2000 \cdot 50}{860 \cdot 7.5} = 15.5 \text{ kW}$$

 $\dot{\textbf{Q}}_{\textbf{A}}$ or $\Phi_{\textbf{A}}$ = Minimum connected load for heating the DHW cyl-

٧ Selected cylinder capacity in I

Spec. thermal capacity 1 kWh 860 I · K

 ΔT_A

 Z_A

Temperature differential between the cylinder storage temperature and the cold water inlet temperature

 $(60 \, ^{\circ}\text{C} - 10 \, ^{\circ}\text{C}) = 50 \, \text{K}$ = Heat-up time in h

As an empirical value, a heat-up time of approx. 2 hours is selected. In the above example, this means that the boiler and the circulation pump for cylinder heating (required heating water volume) should be sized for a heat-up rating of approx. 60 kW.

Calculating the heat demand for DHW heating in hotels, guest houses and residential homes

To calculate the DHW demand, it is necessary to establish the points of use in every room.

For this, only consider the largest point of use per single/double

^{*10} In businesses with exceptionally dirty working conditions, 25 washing facilities are required per 100 users.

^{*11} Showering time excluding changing.

^{*12} Showering time 5 to 8 min; rest of time for changing.

Table 9 - Draw-off demand per point of use at a DHW tempera-

Point of use	Volume of hot water drawn off per use in I	Draw-off dema	nd Q _{h max.}
		per single room in kWh	per double room in kWh
Bath	170	7.0	10.5
Shower cubicle	70	3.0	4.5
Washbasin	20	0.8	1.2

Calculating the required cylinder capacity

= Draw-off demand per draw-off point in kWh = Number of rooms with identical draw-off demand n φ_{n} Utilisation factor (simultaneity); can be applied conditionally:

Number of	1 to 15	16 to 36	35 to 75	76 to 300
rooms				
φ _n *13	1	0.9 to 0.7	0.7 to 0.6	0.6 to 0.5

Hotel grading factor ϕ_2

The following factors can be applied to reflect the category of hotel:

Hotel category	Standard	Good	High
ϕ_2	1.0	1.1	1.2

 Z_{A} = Heat-up time in h

The heat-up time is subject to the rated heating output available for DHW heating. Subject to the rated boiler heating output, you can select a smaller Z_A value than 2

= Duration of the peak DHW demand in h Z_B Assumption: 1 to 1.5 h

V = Volume of the DHW cylinder in I

 T_a = Cylinder storage temperature in °C = Cold water inlet temperature in °C

 T_{e}

This takes into account the heat-up condition of the DHW cylinder.

Example:

Hotel with 50 rooms (30 double rooms and 20 single rooms)

■ Amenities of the single rooms:

5 single rooms with bath, shower cubicle and washbasin 10 single rooms with shower cubicle and washbasin

5 single rooms with washbasin

■ Amenities of double rooms:

5 double rooms with bath and washbasin

20 double rooms with shower cubicle and washbasin

5 double rooms with washbasin

■ Heating water flow temperature = 80 °C

■ Required heat-up time of the DHW cylinder 1.5 hours

■ Duration of peak demand 1.5 hours

Heat demand for DHW heating

Type of room	Equipment level (draw-off point)	n	Q _{h max.} in kWh	n × Q _{h max.} in kWh
Single room:	Bath	5	7.0	35.00
	Shower cubi- cle	10	3.0	30.00
	Washbasin	5	0.8	4.00
Double rooms:	Bath	5	10.5	52.50
	Shower cubi- cle	20	4.5	90.00
	Washbasin	5	1.2	6.00

$$V = \frac{860 \cdot \Sigma (n \cdot Q_{h \text{ max.}}) \cdot \varphi_{n} \cdot \varphi_{2} \cdot Z_{A}}{(Z_{A} + Z_{B}) \cdot (T_{a} - T_{e}) \cdot a}$$
$$= \frac{860 \cdot 217.5 \cdot 0.65 \cdot 1 \cdot 1.5}{(1.5 + 1.5) \cdot (60 - 10) \cdot 0.8}$$

Selected DHW cylinders:

=1520 I

3 × Vitocell 300-H, each with 500 I capacity

3 × Vitocell 300-V, each with 500 I capacity

Calculating the required heat-up output

$$\dot{Q} = \Phi = \frac{V \cdot c \cdot (T_a - T_e)}{Z_A}$$
$$= \frac{1500 \cdot (60 - 10)}{860 \cdot 1.5} = 58 \text{ kW}$$

= Heat-up output in kW ġ or Φ = Selected capacity in I V Spec. thermal capacity 1 kWh \860 I·K/

 T_a Cylinder storage temperature in °C Cold water inlet temperature in °C

 T_e = Heat-up time in h

The boiler and circulation pump for cylinder heating must be sized accordingly for the required heat up output.

To guarantee adequate heating of the building during winter too, this heat volume must be added to the heat load.

Calculating the heat demand for DHW heating in commercial saunas

Assumptions:

The sauna is used by 15 people/h.

5 showers with 12 l/min are available, i.e. the showers are utilised 3 times in a row. A showering time of 5 min results in a DHW demand of 60 I per use.

The heat load of the building is $\dot{Q}_N = \Phi_{HL \text{ buil.}} = 25 \text{ kW}$.

Two points must be observed to safeguard adequate DHW heating:

a) Adequate cylinder capacity (sized according to peak output).

b) The boiler must be large enough to cover the DHW heating and ĊΝ.

Regarding a)

Calculating the cylinder capacity:

15 persons @ 60 I = 900 I at 40 °C at the DHW outlet.

The cylinder storage temperature is 60 °C.

As a low temperature boiler is to be installed, the peak output at a heating water flow temperature of 70 °C must be calculated; see tables in the datasheets for the relevant DHW cylinders.

Conversion to an outlet temperature of 45 °C results in:

^{*13} For spa hotels, trade fair hotels or similar installations, select a utilisation factor of $\phi_n = 1$.

Suggestion: 2 Vitocell 300-V, each with 300 I capacity with a peak output of 408 I per cylinder and 816 I as a cylinder bank (DHW temperature 45 °C).

Regarding b)

Required boiler size

As the showering process repeats hourly, the selected cylinder capacity must be heated up within 1 hour. The heat volume required to achieve this is calculated as follows:

$$\dot{Q}_A = \Phi_A = \frac{V_{cyl.} \cdot \Delta T_A \cdot c}{Z_A}$$

$$= \frac{600 \cdot 1 \cdot (60 - 10)}{860 \cdot 1}$$
= 34.9 kW

 \dot{Q}_A or Φ_A

= Minimum connected load for heating the DHW cylinder in kW

= Capacity in litres

С

= Temperature differential between the cylinder storage temperature and the cold water inlet tempera-

= Spec. thermal capacity

$$\left(\frac{1 \text{ kWh}}{860 \text{ l} \cdot \text{K}}\right)$$

 Z_A Heat-up time in h To guarantee adequate heating of the building during winter too, this heat volume must be added to the heat load. EnEV [Germany] permits this supplement for the following reasons:

- 1. This is commercial utilisation.
- 2. There is no output restriction when using a low temperature boiler.

Calculating the heat demand for DHW heating for sports halls

Observe DIN 18032-1, "Sports grounds, sports halls" as a guideline for the sizing, design and installation of the DHW system. DHW is drawn-off in sports halls in short bursts

Therefore, when it comes to selecting suitable DHW cylinders, the main criterion is the "Peak draw-off rate" (10-minute peak output). The DHW heating system must be capable of ensuring the DHW delivery over the entire period of use (throughout the year).

The following values are assumed for sizing the DHW heating system:

DHW draw-off temperature: Max. 40 °C Water consumption per person m: 8 l/min Shower duration per person t: 4 min 50 min Heat-up time Z_A :

People per heat-up time and training

unit n: Min. 25 people

Cylinder storage temperature T_a: 60 °C

= Peak output at a DHW outlet temperature of 40 °C Peak output at a DHW outlet temperature of 45 °C m_(45 °C) (according to table in DHW cylinder datasheet)

$$m_{(40^{\circ}C)} = m_{(45^{\circ}C)} \cdot \frac{45 - 10}{40 - 10}$$

= 2 · 424 l/10 min

 $= 848 \cdot \frac{35}{30}$

= 989 I/10 min

Selected DHW cylinders:

2 x Vitocell 300-H, each with 350 I,

peak output at 70 °C heating water flow temperature = 989 I at 40 °C

Example for a simple sports hall:

1. Calculating the required DHW volume:

 $= t \cdot \dot{m} \cdot n$ $m_{MW} \\$

4 min/person · 8 l/min · 25 people

= 800 I DHW volume at 40 °C

Selected capacity: 700 I

The selected capacity should roughly correspond to the required DHW volume.

Peak output from the corresponding tables in the datasheets for the relevant DHW cylinders.

Conversion to DHW outlet temperature of 40 °C at

2. Calculating the required heat-up output for the calculated cylinder capacity:

$$\dot{Q}_{A} = \Phi_{A} = \frac{V \cdot c \cdot (T_{a} - T_{e})}{Z_{A}}$$
$$= \frac{700 \cdot (60 - 10)}{860 \cdot 0.833} = 49 \text{ kW}$$

 \dot{Q}_A or Φ_A = Heat-up output in kW V = Cylinder capacity in I c = Spec. thermal capacity

 $\left(\frac{1 \text{ kWh}}{860 \text{ l} \cdot \text{K}}\right)$

T_a = Cylinder storage temperature in °C
 T_e = Cold water inlet temperature in °C

Size the boiler and circulation pump for cylinder heating according to the required heat-up output.

To guarantee adequate heating of the building during winter too, add this heat amount to the heat load. EnEV [Germany] permits this supplement for the following reasons:

- 1. This is commercial utilisation.
- 2. There is no output restriction when using a low temperature boiler.

4.2 Sizing according to peak flow rate with reference to DIN 1988-300

Application

For DHW heating systems operating according to the instantaneous water heater principle, e.g. freshwater modules, the DHW demand can be determined according to the peak flow rate principle. For this, the assumption is made that the peak flow rate to DIN 1988-300 determined for calculating the pipe dimensions for the DHW pipework will also have to be heated by the DHW heating sys-

The peak flow rate is the sum of all connected individual consumers (total flow rate), reduced by a simultaneity factor. This is subject to the type of building.

However, to avoid oversizing, the calculated peak flow rate must not be higher than the sum of the two largest individual consumers that may be operating simultaneously. For systems with several independent consumers, e.g. in apartment buildings, also carry out this check with the total flow rate of the respective largest consumer, e.g. of all apartments.

Calculating the DHW demand

This is based on determining the peak flow rate \dot{v}_S to DIN 1988-300.

 $\dot{V}_S = a (\Sigma \dot{V}_R)^b - c$ (Valid for \dot{V}_R max. = 500 l/s)

Ϋ́S = Peak flow rate

Total flow rate (sum of calculation flow rate of all con-Ϋ́R

Constants subject to building and its type of use (see taa. b. c

Table 11

Building type	Constants			
	а	b	С	
Residential buildings	1.48	0.19	0.94	
Hospital ward	0.75	0.44	0.18	
Hotel	0.70	0.48	0.13	
School	0.91	0.31	0.38	
Administration building	0.91	0.31	0.38	
Facility for supported living, retirement	1.48	0.19	0.94	
home				
Care home	1.40	0.14	0.92	

 \dot{V}_R describes the total flow rate of all consumers. The values of the DHW calculation flow rate of individual consumers is added to this. For details of the DHW calculation flow rate, see consumer manufacturers, e.g. tap manufacturer. If no details are available, use values from DIN 1988-300:

Table 12 - Calculation flow rate for the connections on the cold and warm water sides

Mixer taps for type of draw-off point	DN	Calculation		
		flow rate V _R		
Shower tray	15	0.15 l/s		
Bath	15	0.15 l/s		
Kitchen sink	15	0.07 l/s		
Washbasin	15	0.07 l/s		
Bidet	15	0.07 l/s		

Example:

Detached house with 2 bathrooms, 1 kitchen with kitchen sink, 1 guest toilet with washbasin.

Equipment, bathroom 1: Shower, washbasin

Equipment, bathroom 2: Bath, shower with body showers, 2 washbasins

Assumptions:

A manufacturer datasheet is available for the shower with body shower.

The calculated DHW flow rate is: 20 l/min = 0.33 l/s.

Standard values from Table 12 are used for the remaining consum-

The total flow rate of the detached house is:

$$\dot{V}_R$$
 = Shower 0.15 l/s + washbasin 0.07 l/s + bath 0.15 l/s + shower with body shower 0.33 l/s + 2 washbasins 0.07 l/s + kitchen sink 0.07 l/s + washbasin 0.07 l/s

0.98 l/s

To calculate the peak flow rate, factors a, b, c for a residential building are selected from Table 11:

= 1.48 b = 0.19= 0.94

Peak flow rate:

$$\dot{V}_S$$
 = a $(\Sigma \dot{V}_R)^b$ - c
= 1.48 x 0.98^{0.19} - 0.94
= 0.53 l/s

The calculated peak flow rate of 0.53 l/s is greater than the sum of the two simultaneously operating consumers (shower in bathroom 1 = 0.15 l/s and shower with body shower in bathroom 2 = 0.33 l/s) = 0.48 l/s. Therefore, the value of 0.48 l/s is taken as the peak flow rate.

The DHW heating system must heat 0.48 l/s = approx. 29 l/min of DHW from 10 to 60 °C. This results in a transfer rate of approx. 101 kW. Subject to the heating water temperature or heating water storage temperature in the heating water buffer cylinder (assumption: 70 °C) select a Vitotrans 353 freshwater module from the data-

Example: Vitotrans 353, type PZMA/PZMA-S for installation on a Vitocell 100-E buffer cylinder (see Table 13).

Table 13 - Excerpt from datasheet "Vitotrans 353", type PBMA/PBMA-S and PZMA/PZMA-S

Heating wa- ter tempera- ture in the heating wa- ter buffer cylinder		Max. draw- off rate from Vitotrans 353	Transfer output	Required heating water buf- fer cylin- der volume per I of DHW		d water inlet t ff rate at the r 45 °C	emperature: nixing valve a 50 °C	at 55 °C	Return tem- perature to the heating water buffer cylinder
in °C	in °C	in I/min	in kW	in I	in l/min	in l/min	in l/min	in l/min	in °C
	40	60	125	0.4	_	_	_	_	14
	45	60	146	0.5	70		_	_	15
70	50	52	144	0.8	68	58	_	_	17
	55	44	137	0.9	65	56	49	_	20
→	60	37	127	1.1	60	52	45	40	23

Calculating the required buffer volume

To provide the energy required for DHW heating, a freshwater module is normally connected to a heating water buffer cylinder. The heating water buffer cylinder volume depends on the DHW demand of the installation, the storage temperature in the heating water buffer cylinder and the user behaviour.

The following applies:

t

 s_N

 $V_P = \dot{v} \dot{x} t x (T_P/T_{WW}) x s_N$

V_P = Required minimum volume of the heating water buffer cylinder

= Length of time for which the peak flow rate is required. The value can be based on e.g. the time taken to fill the bath, information provided by the user, or the standard value from DIN 4708 (10 min).

(T_P/T_{WW}) = for the temperature spread between heating water buffer cylinder and DHW:

0.5 = when temperature spread is large (e.g. 90/45 °C)

0.7 = when temperature spread is medium (e.g. 70/45 °C)

1.0 = when temperature spread is small (e.g. 55/45 °C)

= Safety factor for consideration of user behaviour:

1 = normal draw-off pauses 2 = short draw-off pauses 3 ... 4 = very short draw-off pauses

Example:

A buffer cylinder is to be selected for the detached house in the example on page 22 (chapter "Calculating the DHW demand"). The peak flow rate is 29 l/min.

The future system user has indicated that he "enjoys long showers". He has indicated a demand duration of 15 min.

For reasons of energy efficiency, the storage temperature in the buffer cylinder should be no more than 70 $^{\circ}\text{C}.$

The draw-off temperature is 60 °C.

This results in a low temperature spread of 70/60 $^{\circ}$ C, giving a correction factor of 1.

As the future system user has indicated that he "enjoys long showers", short draw-off pauses have been assumed. Therefore, the safety factor $s_{\text{\tiny N}}$ is 2.

The minimum buffer volume V_P is therefore:

 $V_P = \dot{v} \times t \times (T_P/T_{WW}) \times s_N$

= 29 l/min x 15 min x 1 x 2

= 870

According to the datasheet, a Vitocell 100-E with a volume of 950 I is selected.

4

4.3 Sizing according to continuous output

Application

Sizing according to continuous output is employed if hot water is to be continuously drawn from the DHW cylinder. This sizing method is therefore mainly used for commercial applications.

Determining the required DHW cylinder, example 1 (with constant flow temperatures)

Requirements:

- Continuous output in I/h or kW
- DHW outlet temperature in °C
- Cold water inlet temperature in °C
- Heating water flow temperature in °C

The DHW cylinder "Specification" is used to determine:

- Capacity and number of DHW cylinders
- Flow rate on the heating water side
- Delivery head of the circulation pump for cylinder heating

The DHW cylinders are sized in the same way. The following example illustrates the calculation procedure.

Example

For production purposes, a factory requires 2700 l/h DHW at 60 $^{\circ}$ C. The boilers deliver a heating water flow temperature of 90 $^{\circ}$ C. The cold water inlet temperature is 10 $^{\circ}$ C.

Continuous output = 2700 l/h
DHW outlet temperature = 60 °C
Cold water inlet temperature = 10 °C
Heating water flow temperature = 90 °C

Required cylinder type = Stainless steel, vertical

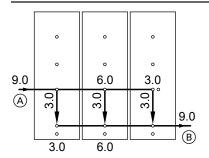
Calculating the number and size of the DHW cylinders

Procedure:

- 1. Select Vitocell 300-V, type EVIA-A
- Refer to the specification for cylinder banks in the Vitocell 300-V datasheet.
- 3. In the table, find the line for "Continuous output from 10 to 60 °C" and Heating water flow temperature "90 °C".
- In the column Cylinder capacity = 500 I and Number of cylinders = 3, a continuous output of 3033 I/h is specified.

Selected DHW cylinders:

3 x Vitocell 300-V, type EVIA-A, each with 500 I capacity. The continuous output of the selected DHW cylinders must be at least equal to the required continuous output.


Calculating heating water flow rate

A heating output of 162 kW is required for the calculated continuous output (see table "Specification" in the datasheet for the DHW cylinder). The required heating water flow rate is stated in the table column for the selected DHW cylinder: 9.0 m³/h, i.e. size the circulation pump for cylinder heating for a heating water flow rate of 9.0 m³/h.

Calculating the pressure drop on the heating water side

The total flow rate of 9.0 $\rm m^3/h$ must be taken into account for the heating water flow and return lines (e.g. valves, bends) as well as the boiler when calculating the pressure drop in the complete system.

Where several cylinders are connected in parallel, the total pressure drop is equal to the pressure drop of an individual cylinder. The pressure drop of the DHW cylinder on the heating water side for the head of the circulation pump for cylinder heating is calculated as follows: As the 3 cylinders are connected in parallel, each cylinder has a heating water flow rate of 3.0 m³/h (see following diagram). Refer to the diagram "Pressure drop on the heating water side" in the datasheet for "Vitocell 300-V, type EVIA-A". For a heating water flow rate of 3000 l/h, read the pressure drop off the straight line of the cylinder with a capacity of 500 l: 90 mbar (9 kPa)

- (A) Heating water flow
- B Heating water return

Result:

Total heating water flow rate = 9.0 m³/h
Heating water flow rate per cylinder = 3.0 m³/h
Pressure drop on the heating water side of the DHW cylinder = 90 mbar (9 kPa)

Sizing the circulation pump for cylinder heating

The circulation pump for cylinder heating must therefore deliver a heating water flow rate of 9.0 m³/h and overcome the pressure drop on the heating water side of 90 mbar (9 kPa) for the 3 cylinders, plus the pressure drop of the boiler, the pipework between the cylinders and the boiler, and the individual pressure drop values of fittings and valves.

The following rule of thumb applies: If the available boiler heating output $\dot{\mathbf{Q}}_{K}$ (to DIN 4701) or Φ_{K} (to EN 12831) is lower than the continuous output $\dot{\mathbf{Q}}_{cyl}$ or Φ_{cyl} , it is sufficient to size the circulation pump for cylinder heating to suit the transfer of the boiler heating output. If, on the other hand, the boiler heating output is greater than the continuous output $\dot{\mathbf{Q}}_{cyl}$ or Φ_{cyl} , the circulation pump for cylinder heating can be sized to suit the continuous output as a maximum rating.

Determining the required DHW cylinder, example 2 (with a fixed heat source temperature differential)

Requirements:

- Required continuous output in kW or in I/h (conversion required)
- DHW outlet temperature in °C
- Cold water inlet temperature in °C

- Heating water flow temperature in °C
- Heating water return temperature in °C

Conversion of continuous output from I/h to kW

 $\dot{Q}_{req.}$ or $\Phi_{req.}$ = Continuous output in kW = Continuous output in l/h c = Spec. thermal capacity $\left\langle \begin{array}{c} 1 \text{ kWh} \end{array} \right\rangle$

 $\left(\frac{1 \text{ kWh}}{860 \text{ l} \cdot \text{K}}\right)$

 ΔT_{WW} = Temperature differential between DHW outlet temperature and cold water inlet temperature in

 $\dot{Q}_{req.}$ or $\Phi_{req.}$ = $\dot{m}_{DHW} \cdot c \cdot \Delta T_{DHW}$

The number of DHW cylinders required and their required size can be determined using the diagrams for the continuous output of the DHW cylinders concerned.

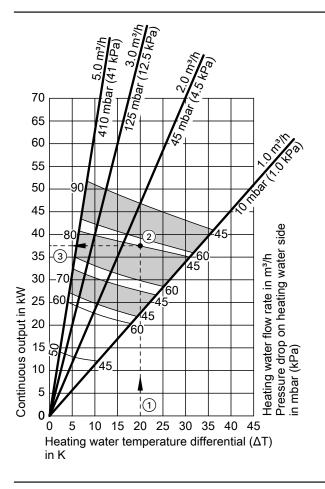
Example:

Required continuous output = 1700 l/hHeating water flow temperature = 80 °CHeating water return temperature = 60 °C

Heating water temperature differ- = $80 \, ^{\circ}\text{C} - 60 \, ^{\circ}\text{C}$ = 20 K

ential

Cold water inlet temperature = 10 °C DHW outlet temperature = 45 °C


A vertical DHW cylinder has to be used on account of the structural characteristics of the building.

Conversion of continuous output from I/h to kW

$$\dot{Q}_{req.}$$
 or Φ $_{req.}$ = $\dot{m}_{WW} \cdot c \cdot \Delta T_{WW}$
= $1700 \cdot \frac{1}{860} \cdot (45 - 10)$
= 69 kW

Calculating the continuous output of the various cylinder sizes As the method of calculation is the same for all cylinder sizes, the

process for calculating the continuous output of the Vitocell 300-V DHW cylinder with 300 I capacity is shown as an example. From point ① (20 K) via point ② (required DHW heating from 10 °C to 45 °C at heating water flow temperature 80 °C) read at point ③: Continuous output of the DHW cylinder 37.5 kW

Calculating the required number of DHW cylinders of a given size

= Required number of DHW cylinders

 $\dot{Q}_{req.}$ or $\Phi_{req.}$ = Required continuous output in kW

 \dot{Q}_{cyl} or Φ_{cyl} = Continuous output of the selected DHW cylinders in kW

$$n = \frac{Q_{req.}}{\dot{Q}_{cyl.}} = \frac{\Phi_{req.}}{\Phi_{cyl.}}$$
$$= \frac{69 \text{ kW}}{\Phi_{cyl.}} = 1.8$$

Required number of DHW cylinders = 2

Calculating the required flow rate on the heating water side

= Flow rate on the heating water side in I/h

 $\dot{Q}_{req.}$ or $\Phi_{req.}$

= Required continuous output in kW

 ΔT_{HW}

= Heating water temperature differential in K

= Spec. thermal capacity

$$\left(\frac{1 \text{ kWh}}{860 \text{ I} \cdot \text{K}}\right)$$

$$\dot{m}_{HW} = \frac{\dot{Q}_{req.}}{c \cdot \Delta T_{HW}} = \frac{860 ... \dot{Q}_{req}}{\Delta T_{HW}}$$

$$= \frac{\Phi_{req.}}{c \cdot \Delta T_{HW}} = \frac{860 ... \Phi_{req.}}{\Delta T_{HW}}$$

$$=\frac{860\cdot 69}{20}$$

= 2967 l/h (total)

= 1484 l/h (per DHW cylinder)

5.1 Applications and advantages

The Viessmann cylinder loading system is a combination of a Vitocell 100-L DHW cylinder and a modular Vitotrans 222 heat exchanger set.

The cylinder loading system for DHW heating is a preferred choice for the following applications and conditions:

- Heating circuits requiring low return temperatures or where the return temperatures are limited, e.g. for district heating or condensing boilers:
- Heating from the heating temperature (10 °C) to the end temperature (60 °C) is achieved in one circulation via the heat exchanger of the Vitotrans 222. This wide temperature spread on the DHW side results in a low return temperature on the heating water side. A low return temperature enables a high condensation rate when utilising condensing technology.
- Large cylinder capacities with offset heating and draw-off times, e.g. where water is drawn off at peak times in schools, sports centres, hospitals, army barracks, council facilities, apartment build-

- Short-term peak loads, i.e. high draw-off rates and varying reheat times, e.g. DHW heating in swimming pools, sports facilities, industrial enterprises and abattoirs.
- Limited space as the cylinder loading system can transfer a high

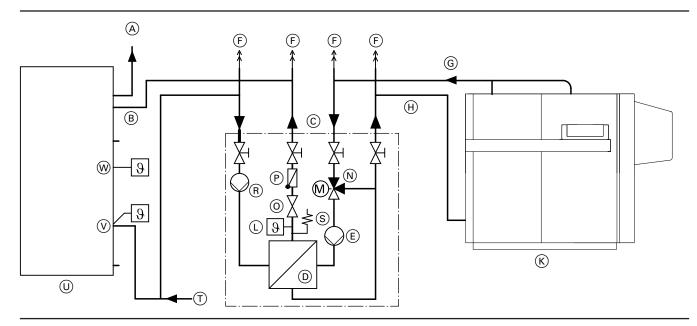
5.2 Function description of the cylinder loading system

Operation with modulating flow temperature

During the heating process (no draw-off), loading pump (\mathbb{R}) within the cylinder loading system withdraws cold water (\mathbb{T}) from the bottom of DHW cylinder (\mathbb{U}) ; this is then heated in heat exchanger set (\mathbb{C}) and resupplied to the top (\mathbb{R}) of the DHW cylinder.

To avoid disturbing the thermal stratification layers inside the DHW cylinder, cylinder loading pump (\mathbb{R}) will only be switched on if temperature sensor (\mathbb{L}) signals that the set temperature has been reached.

The required heat exchanger transfer output is set by line regulating valve (0).


Mixer assembly (accessories) (N) mixes the heating water on the primary side in accordance with the set DHW temperature. A set DHW temperature of max. 60 °C prevents scaling of the plate heat exchanger.

Pasteurisation is feasible in conjunction with Viessmann boilers with the Vitotronic boiler control units or with the Vitotronic 200-H heating circuit control units (accessories). The base load is covered by the continuous output of the Vitotrans 222.

Any additional hot water demand during peak times is covered by the cylinder capacity.

During draw-off and once draw-off has ended, the cylinder volume is reheated to the set temperature via the Vitotrans 222. In the fully heated state (no draw-off), cylinder loading pump R and heating circuit pump E in the Vitotrans 222 are switched OFF.

Provided the above set heating water and DHW temperatures are observed, the Vitotrans 222 heat exchanger set can be operated up to a total water hardness of 20 °dH (total of alkaline earths 3.6 mol/m³).

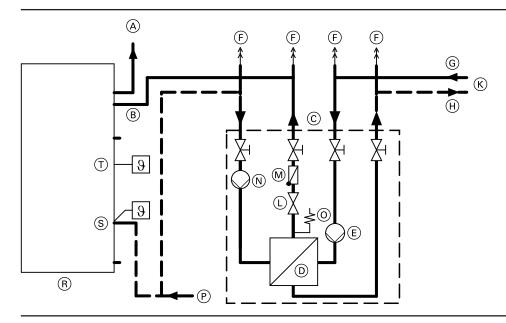
- □ HW
- (B) Hot water inlet from the heat exchanger
- © Vitotrans 222 heat exchanger set
- D Plate heat exchanger
- (E) Heating circuit pump (primary), highly efficient
- F Air vent valve
- (G) Heating water flow
- (H) Heating water return
- (K) Boiler
- Temperature sensor

- (N) Mixer assembly
- (i) Line regulating valve
- (P) Non-return valve
- R Cylinder loading pump (secondary), highly efficient
- Safety valve, does not replace the DHW cylinder safety valve to DIN 1988.
- T Shared cold water connection with safety assembly to DIN 1988
- (i) Vitocell 100-L, (here: 500 I capacity)
- (V) Lower cylinder temperature sensor (OFF)
- W Upper cylinder temperature sensor (ON)

Operation with constant flow temperature

The Vitotrans 222 heat exchanger set is operated without a mixer assembly. Limit the heating water temperature to 75 °C.

The required DHW temperature and transfer output are set by adjusting the circulating volume for the heating process according to the heating output of the heat exchanger at line regulating valve ①. If the available boiler output is below that of the Vitotrans 222, the setting is done according to the boiler output.

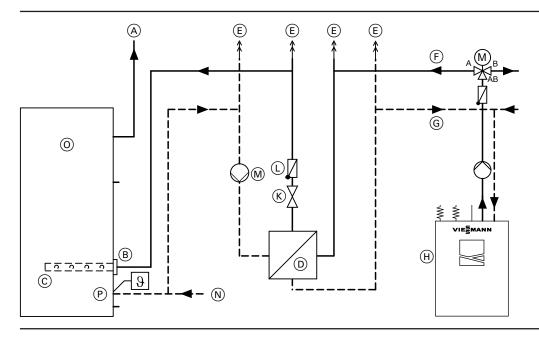

High or medium draw-off rates are covered by the DHW cylinder. Cold water flows into the DHW cylinder to replace the hot water drawn. If the cold water layer inside the DHW cylinder reaches upper temperature controller ①, the Vitotrans 222 starts.

The base load is covered by the continuous output of the Vitotrans 222. Any additional hot water demand during peak times is covered by the cylinder capacity.

During draw-off and once draw-off has ended, the cylinder volume is reheated to the set temperature via the Vitotrans 222. In the fully heated state (no draw-off), cylinder loading pump (N) and heating circuit pump (E) in the Vitotrans 222 are switched OFF. Provided the above set heating water and DHW temperatures are observed, the Vitotrans 222 heat exchanger set can be operated up to a total water hardness of 20 °dH (total of alkaline earths 3.6 mol/m³).

Note

The maintenance interval depends on the water hardness, the set DHW temperature and the volume of hot water drawn.



- A DHW
- (B) Hot water inlet from the heat exchanger
- © Vitotrans 222 heat exchanger set
- D Plate heat exchanger
- (E) Heating circuit pump (primary), highly efficient
- (F) Air vent valve
- (G) Heating water flow
- Heating water return
- (K) Heat source with a constant flow temperature (e.g. district heating, max. 75 $^{\circ}$ C)
- Line regulating valve
- M Non-return valve
- N Cylinder loading pump (secondary), highly efficient
- Safety valve
- P Shared cold water connection with safety assembly to DIN 1988
- R Vitocell 100-L, (here: 500 I capacity)
- S Lower temperature controller (OFF)
- (T) Upper temperature controller (ON)

Operation with a heat pump in conjunction with a heating lance for DHW heating

In the cylinder loading system, loading pump (M) withdraws the cold water from the bottom of DHW cylinder (①) during the cylinder heating process (no draw-off). The water is heated in plate heat exchanger (D) and resupplied to the DHW cylinder via heating lance (C) mounted in flange (B). The generously sized outlet apertures in the heating lance result in low flow velocities, which in turn provide a clean temperature stratification inside the DHW cylinder.

Installation of the optional immersion heater EHE (accessories) into the DHW cylinder flange enables DHW heating to be boosted further.

- (A) (B) DHW
- Hot water inlet from the heat exchanger
- C Heating lanceD Plate heat exchanger
- (E) Air vent valve
- F Heating water flow from the heat pump
- G Heating water return to the heat pump

- (H) Heat pump
- Line regulating valve (K)
- Non-return valve
- M Cylinder loading pump
- N Shared cold water connection with safety assembly to DIN 1988
- O Vitocell 100-L
- P Cylinder temperature sensor of the heat pump

5.3 General formulas for calculating the cylinder loading system

Calculation based on water volume

With reference to EN 12831, Q = Φ is used for heat volume and \dot{Q} = L for the heating output (continuous output) instead of the values previously used in DIN 4701.

$$\begin{aligned} V_D &= \frac{L \cdot t}{c \cdot \Delta T} \text{ in I} \\ V_{ttl.} &= V_D + V_{cyl.} \text{ in I} \\ &= n_Z \cdot \dot{V} \cdot t \text{ in I} \end{aligned}$$

Calculation based on heat volume

With reference to EN 12831, Q = Φ is used for heat volume and \dot{Q} = L for the heating output (continuous output) instead of the values previously used in DIN 4701.

$$\begin{split} & \Phi_D = L \cdot t \text{ in kWh} \\ & \Phi_{ttl.} = V_{ttl.} \cdot \Delta T \cdot c \text{ in kWh} \\ & = \Phi_{cyl.} + \Phi_D \text{ in kWh} \\ & = V_{ttl.} \cdot \Delta T \cdot c = \Phi_{cyl.} + \Phi_D \\ & \Phi_{cyl.} = V_{cyl.} \cdot c \cdot (T_a - T_e) \text{ in kWh} \end{split}$$

5.4 Sample calculation

A sports centre is equipped with 16 showers which are limited to 15 l/min

According to design requirements, 8 showers are operated simultaneously for up to 30 min continuously. The drawing temperature should be 40 °C. A max. of 100 kW boiler output is available for DHW heating.

С = Spec. thermal capacity

$$\left(\frac{1 \text{ kWh}}{860 \text{ l} \cdot \text{K}}\right)$$

= Number of DHW cylinders n

 n_{Z} = Number of draw-off points

= Heat volume in kWh available by continuous output Ф

Continuous output in kW L

Total heat demand in kWh (for production and demand) Фн

Usable heat volume of the total cylinder volume in kWh

ФсуІ ФсуІ. Usable heat volume of a single DHW cylinder in kWh

ind.

= Time in h

 T_a = Cylinder storage temperature in °C

 T_{e} = Cold water inlet temperature in °C

ΔΤ Temperature differential between draw-off temperature

and cold water inlet temperature in K

ċ = Draw-off rate per draw-off point in I/h

 V_D = DHW heated by continuous output in I

= Total draw-off volume in I

= Usable cylinder capacity in I

Calculation of the cylinder size based on water volume

Over a period of 30 min, a total water volume V_{ttl} at a temperature of 40 °C is required.

$$V_{ttl.} = n_Z \cdot \dot{V} \cdot t$$

= 8 showers · 15 l/min · 30 min

= 3600 I

Of the 3600 I, the 100 kW connected load can deliver a water volume V_D over a period of 30 min.

$$V_D = \frac{L \cdot t}{c \cdot \Delta T}$$

$$V_D = \frac{100 \text{ kW} \cdot 0.5 \text{ h} \cdot 860 \text{ l} \cdot \text{K}}{1 \text{ kWh} \cdot (40 - 10) \text{ K}}$$

This means that the DHW cylinder must make the following water volume available at a temperature of 40 °C:

3600 I - 1433 I = 2167 I

At a storage temperature of 60 °C, the required cylinder volume V_{cvl}

$$V_{\text{cyl.}} = \frac{2167 \text{ I} \cdot (40 - 10) \text{ K}}{(60 - 10) \text{ K}} = 1300 \text{ I}$$

The calculated number n of Vitocell 100-L with a volume of 750 I each results from the following:

$$n = \frac{1300 \text{ I}}{750 \text{ I}} = 1.73$$

Selected cylinder loading system:

2 Vitocell 100-L, each with 750 I capacity, and 1 Vitotrans 222 heat exchanger set with a heating output of 120 kW (in accordance with max. available boiler output according to the sample calculation, i.e. 100 kW).

Calculation of the cylinder size based on heat volume

Over a period of 30 min (as per calculation), a total water volume of 3600 I at a temperature of 40 °C is required. This corresponds to a heat volume of Φ_{ttl} .

$$Φ_{ttl.} = V_{ttl.} \cdot \Delta T \cdot c$$

$$= 3600 I \cdot 30 K \cdot \frac{1 \text{ kWh}}{860 I \cdot K} = 126 \text{ kWh}$$

The connected load can, over the drawing period of 30 min, provide a heat volume of Φ_D .

$$\Phi_{\rm D} = {\rm L \cdot t}$$

= 100 kW · 0.5 h = 50 kWh

This means that the DHW cylinder must store a heat volume of Φ_{cyl} .

$$\Phi_{\text{cyl.}} = \Phi_{\text{ttl.}} - \Phi_{\text{D}}$$
$$= 126 \text{ kWh} - 50 \text{ kWh} = 76 \text{ kWh}$$

Each individual Vitocell 100-L DHW cylinder with 750 I cylinder capacity stores the following heat volume $\Phi_{\text{cyl. ind.}}$:

$$\Phi_{\text{cyl. ind.}} = 750 \,\text{I} \cdot (60 - 10) \,\text{K} \cdot \frac{1 \,\text{kWh}}{860 \,\text{I} \cdot \text{K}}$$

= 43.6 kWh

This results in the calculated number of cylinders n.

$$n = \frac{\Phi_{cyl.}}{\Phi_{cyl. ind.}}$$
$$= \frac{76 \text{ kWh}}{43.6 \text{ kWh}} = 1.74$$

Selected cylinder loading system:

2 Vitocell 100-L, each with 750 I cylinder capacity, and 1 Vitotrans 222 heat exchanger set with a heating output of 120 kW (in accordance with max, available boiler output according to the sample calculation, i.e. 100 kW).

Installation — DHW cylinders

6.1 Connection on the DHW side

General information

See the diagrams from page 36 or 42 regarding the connection on the DHW side of DHW cylinders installed as a cylinder bank. Fittings that are installed in the connection line must conform to DIN 1988 (see diagrams on page 34) and DIN 4753 [or local regulations].

These fittings comprise the following:

- Shut-off valves
- Drain valve
- Pressure reducer
- Safety valve
- Non-return valve
- Pressure gauge
- Flow regulating valve
- Drinking water filter

Pressure reducer (to DIN 1988)

Install this device if the pressure in the pipework at the connection point exceeds 80 % of the safety valve response pressure.

It is advisable to install the pressure reducer immediately downstream of the water meter. This creates nearly the same pressures in the entire DHW system, which is thereby protected against overpressure and water hammer.

According to DIN 4109, the static pressure of the water supply system after distribution over the various floors upstream of the fittings should not be higher than 5 bar (0.5 MPa).

Safety valve

The system must be equipped with a type-tested diaphragm safety valve as protection against overpressure.

Permissible operating pressure: 10 bar (1 MPa).

The connection diameter of the safety valve must be as follows:

- Up to 200 I capacity min. R ½ (DN 15), max. heat input 75 kW,
- Between 200 and 1000 I capacity min. R ¾ (DN 20), max. heat input 150 kW,
- Between 1000 and 5000 I capacity min. R 1 (DN 25), max. heat input 250 kW.

Install the safety valve in the cold water line. It must not be able to be isolated from the DHW cylinder or the cylinder bank. There must be no constrictions in the pipework between the safety valve and the DHW cylinder. Never seal off the safety valve discharge pipe. Ensure that any expelled water is safely and visibly drained into a drainage system. Position a sign close to the safety valve discharge pipe, or ideally on the safety valve itself, with the following inscription:

"For safety reasons, water may be discharged from the discharge pipe during heating. Never seal off."

Recommendation: Install the safety valve above the top edge of the cylinder. Then the DHW cylinder will not need to be drained when working on the safety valve.

Non-return valve

This prevents system water and heated water from flowing back into the cold water pipe and into the mains water supply.

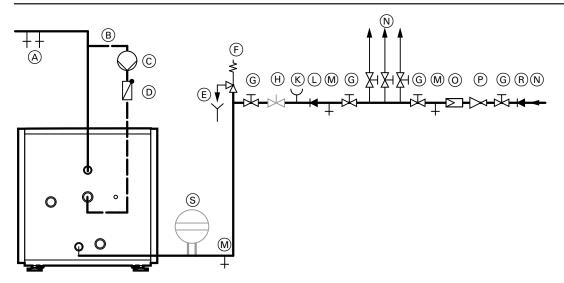
Pressure gauge

Provide a connection for a pressure gauge.

Flow regulating valve

We recommend that a flow regulating valve is installed and the maximum water flow rate is adjusted in accordance with the 10-minute peak output of the DHW cylinder.

Drinking water filter

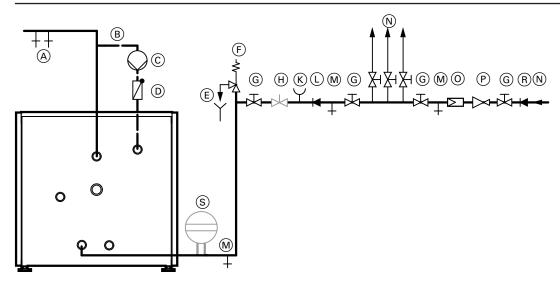

Install a drinking water filter in accordance with DIN 1988. The installation of a drinking water filter prevents dirt from being introduced into the drinking water system.

Only for cylinder banks Vitocell 300-H:

With DHW outlet temperatures in excess of 60 °C, the connection line on the DHW side can also be connected in series, in multi cylinder banks. Connect the connection line on the heating water side as shown in the diagrams on page 41.

Installation — DHW cylinders (cont.)

Vitocell 100-H and Vitocell 300-H up to 200 I capacity



Connection on the DHW side to DIN 1988

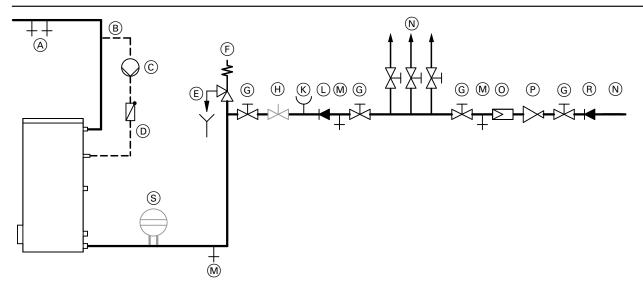
- (A) DHW
- B DHW circulation pipe
- © DHW circulation pump
- D Spring-loaded check valve
- (E) Visible discharge pipe outlet point (tundish)
- F Safety valve
- G Shut-off valve
- (H) Flow regulating valve

- (K) Pressure gauge connection
- (L) Non-return valve
- M Drain
- N Cold water
- Drinking water filter
- (P) Pressure reducer DIN 1988-200:2012-05
- (R) Non-return valve/pipe separator
- (S) Diaphragm expansion vessel, suitable for potable water

Vitocell 300-H, from 350 I capacity

Connection on the DHW side to DIN 1988

- (A) DHW
- $\bar{\mbox{\ensuremath{B}}}$ DHW circulation pipe
- © DHW circulation pump
- Spring-loaded check valve
- © Visible discharge pipe outlet point (tundish)
- F Safety valve
- Shut-off valve


- Flow regulating valve
- (K) Pressure gauge connection
- (L) Non-return valve
- M Drain
- N Cold water
- Drinking water filter
- Pressure reducer DIN 1988-200:2012-05

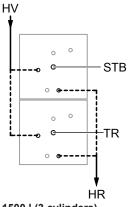
Installation — DHW cylinders (cont.)

- R Non-return valve/pipe separator
- S Diaphragm expansion vessel, suitable for potable water

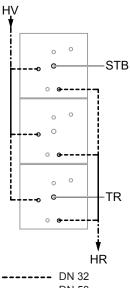
Vitocell 100-V and Vitocell 300-V

Connection on the DHW side in accordance with DIN 1988

- (A) DHW
- B DHW circulation pipe
- © DHW circulation pump
- D Spring-loaded check valve
- © Visible discharge pipe outlet point (tundish)
- F Safety valve
- Shut-off valve
- (H) Flow regulating valve

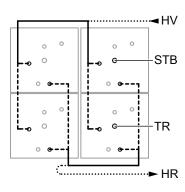

- (K) Pressure gauge connection
- Non-return valve
- ${\color{red} {\mathbb{M}}} \ \, {\rm Drain}$
- N Cold water
- Drinking water filter
- P Pressure reducer DIN 1988-200:2012-05
- R Non-return valve/pipe separator
- © Diaphragm expansion vessel, suitable for potable water

Installation — DHW cylinders (cont.)

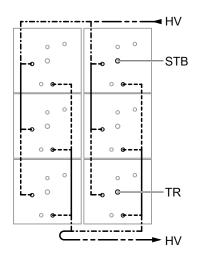

Connection on the DHW side of cylinder banks with Vitocell 300-H

- Observe stacking height: Vitocell 300-H, 350 I: Max. 2 pce Vitocell 300-H, 500 I: Max. 3 pce
- Observe the cross-sections of DHW connecting pipes.

700 and 1000 I (2 cylinders)



1500 I (3 cylinders)



DN 50 ----- DN 80 DN 100 --- DN 125

2 x 700 I and 2 x 1000 I (2 x 2 cylinders)

2 x 1500 I (2 x 3 cylinders)

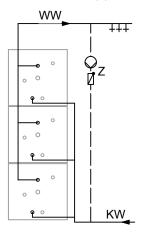
- HR Heating water return
- HV Heating water flow
- STB High limit safety cut-out (if required)
- TR Temperature controller

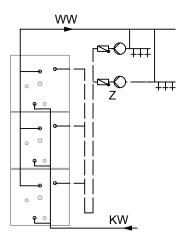
6.2 DHW circulation pipes

For reasons of hygiene and convenience, DHW circulation pipes are installed in DHW heating systems. Observe the applicable standards and rules. Always fit DHW circulation pipes or DHW circulation systems with appropriate pumps, hydraulically adjust and thermally insulate them in accordance with the applicable regulations. Take the applicable standards and regulations into account (e.g. DVGW Codes of Practice W551/W553 and DIN 1988/TRWI).

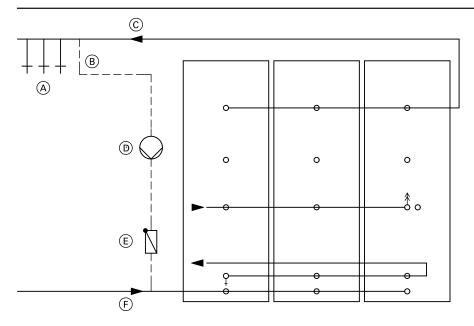
The flow rate of the circulation system is determined according to the scale of the pipework, the thermal insulation and the targeted or required maximum temperature differential between the cylinder outlet (DHW) and the DHW circulation inlet (DHW circulation). Depending on the type of DHW heating system, there are various connection options for the DHW circulation pipe. Virtually all DHW cylinders are fitted with connections for the DHW circulation pipe in the upper third of the cylinder. The exception to this is DHW heating systems in continuous operation such as freshwater stations or combi cylinders with an integral DHW indirect coil (Vitocell 340-M/Vitocell 360-M). They have a "threaded DHW circulation fitting", which means that the DHW circulation line is routed partially into the heat exchanger. If this is not the case, the DHW circulation pipe can also be connected to the cold water inlet of the DHW cylinder.

Connecting to the cold water inlet is also an option for DHW cylinders where, due to the ratio of the draw-off rate and/or the flow rate of DHW circulation to the cylinder capacity, continuous mixing of the DHW cylinder content must be expected, e.g. in case of very small DHW cylinders. Connecting to the cold water inlet may also be advisable in the case of extremely high DHW circulation flow rates. In poorly insulated pipework or very widely branched systems in particular, extremely high flow rates may be necessary. It is then important to ensure that high flow velocities cannot lead to any settling inside the DHW cylinder. The resulting mixing in the standby part may lead to extremely long heat-up times and fluctuating outlet temperatures (DHW). In this case too, connecting the DHW circulation pipe to the cold water inlet may be advantageous in terms of the operating characteristics of the DHW heating system.


6.3 Connection of the DHW circulation pipe with cylinder banks


General information

- Connect the DHW circulation pipe with detachable fittings.
- Install the cylinder banks with DHW circulation according to the diagrams below to ensure that each individual cylinder is heated evenly.


In conjunction with boilers or district heating systems without a return temperature limit on the heating water side and for operation on the heating side with saturated steam up to 1 bar (0.1 MPa) pressure and a DHW circulation pipe:

In conjunction with district heating systems with a return temperature limit on the heating water side and/or several DHW circulation pipes:

Installing the Vitocell 100-V and Vitocell 300-V as a cylinder bank

Connection in conjunction with a district heating system without return temperature limit or in conjunction with boilers (low temperature operation) and a simple DHW circulation pipe

- (A) Draw-off points
- B DHW circulation pipe
- © DHW

- (D) DHW circulation pump
- (E) Check valve
- (F) Cold water

Installing the Vitocell 100-V and Vitocell 300-V as a cylinder bank

Connection in conjunction with condensing boilers or district heating systems without return temperature limit and systems with branched DHW circulation networks

- A Draw-off points
- $\bar{\ensuremath{\mathbb{B}}}$ DHW circulation pipe
- © DHW

- DHW circulation pump
- E Check valve
- F Cold water

6.4 Connection on the heating side

Connection on the heating side without return temperature limit

According to DIN 4753, the water in the DHW cylinder may be heated to approx. 95 $^{\circ}\text{C}.$

To ensure that the DHW temperature never exceeds 95 $^{\circ}$ C, install a control unit to regulate the heat supply in accordance with the following circuit diagrams.

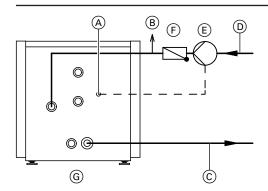
With the installation according to the diagrams on page 40 and 42, the circulation pump for the DHW cylinder is switched by the temperature controller. The spring-loaded check valve prevents continued heating of the DHW cylinder due to natural circulation. A water temperature controller may also be used instead of the temperature controller (see diagrams on page 42).

When heating water flow temperatures exceed 110 °C, also fit a type-tested high limit safety cut-out. For this, the TR/HLSC combination device with 2 separate thermostatic systems (temperature limiter and high limit safety cut-out) is used (see diagrams on page 42). Systems that already incorporate a high limit safety cut-out for limiting the temperature of the heating medium to 110 °C, (e.g. in the boiler), require no additional high limit safety cut-out in the DHW cylinder.

Cylinder banks

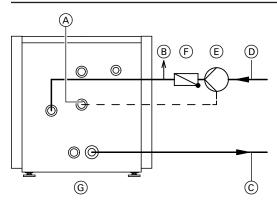
For cylinder banks, it is sufficient to install a temperature controller in only one of the cylinders.

If individual cylinders in a cylinder bank need to be controlled separately, group the cylinders into several cylinder banks or install them as individual cylinders.


■ Vitocell 300-H:

With cylinder banks, make the connections on the heating water side and arrange the temperature controller and high limit safety cut-out (if required) as shown in the diagrams from page 41.

■ Vitocell 100-V and Vitocell 300-V:

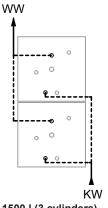

The cylinder bank is controlled by one temperature controller. The individual cylinders in a cylinder bank therefore cannot be controlled separately. Install the temperature controller in the last cylinder as seen from the heating water flow (see diagrams on page 42).

Vitocell 100-H and Vitocell 300-H

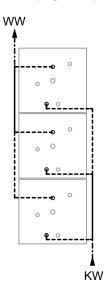
130, 160 and 200 I capacity

- Temperature sensor/temperature controller and high limit safety cut-out (if required)
- B Air vent valve
- © Heating water return
- (D) Heating water flow
- E Circulation pump
- (F) Spring-loaded check valve
- G Vitocell 100-H or Vitocell 300-H

350 and 500 I capacity

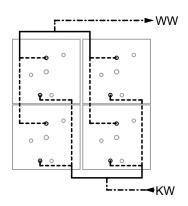

- Temperature sensor/temperature controller and high limit safety cut-out (if required)
- B) Air vent valve
- © Heating water return
- D Heating water flow
- E Circulation pump
- F Spring-loaded check valve
- © Vitocell 100-H or Vitocell 300-H

Vitocell 300-H as cylinder bank

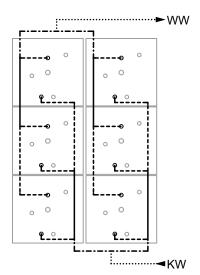

Note

Observe the cross-sections of connection pipes on the heating water side.

700 and 1000 I (2 cylinders)

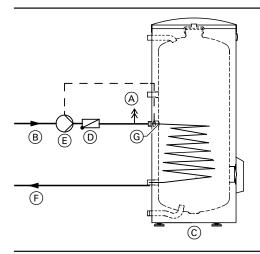


1500 I (3 cylinders)

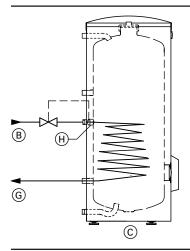


DN 32
DN 40
DN 50
DN 65

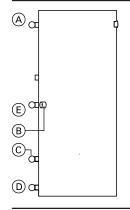
2 x 700 I and 2 x 1000 I (2 x 2 cylinders)

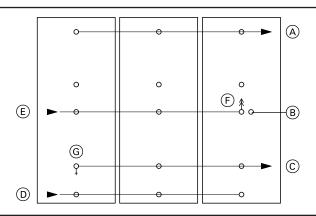

2 x 1500 l (2 x 3 cylinders)

KW Cold water WW DHW


Vitocell 100-V and Vitocell 300-V

Control by starting/stopping the circulation pump


- (A) Air vent valve
- B Heating water flow
- © Vitocell 100-V or Vitocell 300-V
- D Spring-loaded check valve
- E Circulation pump
- (F) Heating water return
- Temperature sensor/temperature controller and high limit safety cut-out (if required)


Control via a control valve

- (B) Heating water flow
- © Vitocell 100-V or Vitocell 300-V
- G Heating water return
- H) Sensor for water temperature controller

Vitocell 100-V and Vitocell 300-V as a cylinder bank

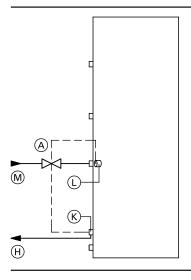
- (A) DHW
- B Temperature sensor/temperature controller
- (c) Heating water return

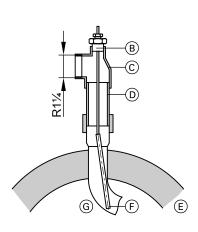
- (D) Cold water
- E Heating water flow
- (F) Air vent valve
- G Drain

Connection on the heating side with return temperature limit

The return temperature limiting facility only needs to be installed if required by the relevant district heating plant.

To ensure that the heating water return temperature cannot exceed a specified value, use a return temperature limiter with control valve e.g. as offered by Samson, type 43-1, control range 25 to 70 °C. For individual cylinders and cylinder banks, install the sensor as shown in the relevant diagrams. The customer is responsible for installing the necessary pipework.

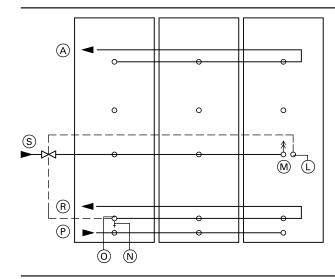

The control valve is sized according to the required heating water flow rate and the system pressure drop.

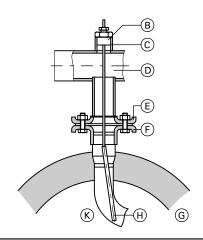

Note

When return temperatures are restricted, a check must be carried out to determine whether the hygiene requirements in accordance with TRWI/DVGW are met. A transfer pump may have to be provided.

Vitocell 100-V and Vitocell 300-V

Installation of the sensor for limiting the return temperature in the heating water return for individual cylinders.




- Water temperature controller
- B Gland fitting
- © Tee
- Fitting
- (E) Thermal insulation

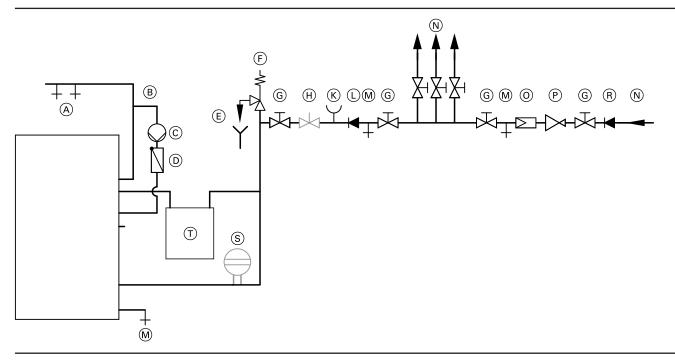
- $\begin{picture}(60,0)\put(0,0){\line(1,0){10}}\put(0,0){\line(1,0){10}$
- G Internal indirect coil
- Heating water return
- Sensor for return temperature limiter
- © Sensor for water temperature controller
- (M) Heating water flow

Vitocell 100-V and Vitocell 300-V as a cylinder bank

Installation of the sensor for limiting the return temperature in the heating water return.

- (A) DHW
- B Gland fitting
- © Female connection R ½ EN 10241 (on site)
- (D) Header
- (E) Flange
- (F) Threaded flange
- G Thermal insulation
- (H) Sensor for the return temperature limiter

- (K) Internal indirect coil
- Sensor for water temperature controller
- M Air vent valve
- N Drain
- Sensor for return temperature limiter
- P Cold water
- R Heating water return
- (s) Heating water flow


Installation — cylinder loading system

7.1 Connections

For connection on the DHW water side, see www.viessmannschemes.com

Connection on the DHW side of the Vitotrans 222 (accessories) in conjunction with a Vitocell 100-L

(Connection to DIN 1988)

- Draw-off points (DHW)
- $^{\circ}$ DHW circulation pipe
- DHW circulation pump
- (D) Spring-loaded check valve
- (E) Visible discharge pipe outlet point (tundish)
- (F) Safety valve
- Shut-off valve (G)
- Flow regulating valve
- Installation information
- The pipework downstream of the Vitotrans 222 must not be made from zinc-plated steel pipes.
- Establish the cold water connection with a tee with straight flow to the cold water connection of the Vitocell 100-L. Always make the cold water connection to the Vitotrans 222 as a tee branch.
- The safety valve underneath the Vitotrans 222 does not replace the safety valve of the safety assembly to DIN 1988.

The following are part of the safety assembly according to DIN 1988:

- Shut-off valves
- Drain valve
- Pressure reducer
- Safety valve
- Non-return valve
- Pressure gauge
- Flow regulating valve
- Drinking water filter

Pressure reducer (to DIN 1988)

Install this device if the pressure in the pipework at the connection point exceeds 80 % of the safety valve response pressure.

- Pressure gauge connection
- (L) Non-return valve (M)Drain
- Cold water \bigcirc
- Drinking water filter 0
- Pressure reducer DIN 1988-200:2012-05
- Non-return valve/pipe separator
- (S) Diaphragm expansion vessel, suitable for potable water
- Vitotrans 222

It is advisable to install the pressure reducer immediately downstream of the water meter. This creates nearly the same pressures in the entire DHW system, which is thereby protected against overpressure and water hammer.

According to DIN 4109, the static pressure of the water supply system after distribution over the various floors upstream of the fittings should not be higher than 5 bar (0.5 MPa).

Safety valve

The connection diameter of the safety valve must be as follows:

- With 500 to 1000 I cylinder capacity min. R 3/4 (DN 20),
 - max. heat input 150 kW
- Between 1000 and 5000 I cylinder capacity min. R 1 (DN 25),

max. heat input 250 kW

Install the safety valve in the cold water line. Ensure it cannot be shut off from the DHW cylinder. There must be no constrictions in the pipework between the safety valve and the DHW cylinder. Never seal off the safety valve discharge pipe. Ensure that any expelled water is safely and visibly drained into a drainage system. Position a sign close to the safety valve discharge pipe, or ideally on the safety valve itself, with the following inscription:

"For safety reasons, water may be discharged from the discharge pipe during heating. Never seal off."

Installation — cylinder loading system (cont.)

Recommendation: Install the safety valve above the top edge of the cylinder. Then the DHW cylinder will not need to be drained when working on the safety valve.

Non-return valve

This prevents system water and heated water from flowing back into the cold water pipe and into the mains water supply.

Pressure gauge

Provide a connection for a pressure gauge.

Flow regulating valve

We recommend that a flow regulating valve is installed and the maximum water flow rate is adjusted in accordance with the 10-minute peak output of the DHW cylinder.

Drinking water filter

Install a drinking water filter in accordance with DIN 1988. The installation of a drinking water filter prevents dirt from being introduced into the drinking water system.

Appendix

8.1 Questionnaire regarding the sizing of DHW cylinders

DHW cylinders in DHW heating systems

1. Address		2. Essential	details			
Name		Required cylinder temper- ature			°C	
Street		Flow temperature of the heat source			°C	
Postcode / Town		Spread (Δt)		Optimise	ed	K
Telephone						
(for any queries)						
Date		Require	d heating	output is calculated	with EDIS	
Project		Max. av	ailable he	eating output		KW
3. Selection of calculation method						
Residential units						
Type of residential unit			N _L facto	or	Number	
1-2 room studio apartment with shower				0.71		
3-room apartment with standard bath				0.77		
Standard residential unit with standard bath				1.00		
Standard residential unit with deluxe bath				1.12		
Deluxe apartment with standard bath and sho	wer			1.63		
Standard residential unit with guest room	WGI			1.89		
Other				1.00		
Hotels and guest houses						
Equipment			Deman	d (kWh)	Number	
Single room with 1 bath and 1 washbasin			20	7.0		
Single room with 1 shower and 1 washbasin				3.0		
Single room with 1 washbasin				0.8		
Double room with 1 bath and 1 washbasin				10.5		
Double room with 1 shower and 1 washbasin				4.5		
Double room with 1 washbasin				1.2		
Covers				0.6		
Hotel category (star rating)						
Demand period						Hours
Heat-up time						Hours
Catering businesses (e.g. restaurant, can	·					
Location of catering	Restaurant	Canteen		Other		
facilities				I =		
				DHW demand		I/cover
Number of covers	Number of draw-off points			Demand period		Hours
	,	,				
Hospitals and clinics		DI DAY I	1 (45 00)			
Number of beds		DHW demand				I/bed
		DHW demand	· ·		I/draw-0	off event
Total number of draw-off points		Demand perio	od			Hours
Shared accommodation (e.g. residential l	nome, army barracks)					
Number of occupants	·	Shower freque	ency	Numb	er of users/hour and	shower
Number of showers		DHW demand		,	l/show	er taken
Number of additional draw-off events		DHW demand I/draw-off ev			off event	
Number of additional draw-off events						

Appendix (cont.)						
Retirement home, nursing home						
Number of beds		DHW demand	(45 °C)			l/bed
Number of covers		DHW demand				l/cover
Number of additional draw-off		Demand period				Hours
points						
Number of draw-off points per						
room						
Campsite, recreational camp						
Number of campers		Shower freque	ency	Num	ber of users	hour and shower
Number of showers		DHW demand				l/shower taken
Number of additional draw-off		DHW demand	(45 °C)			l/draw-off point
points						
Leisure facilities (e.g. sports hall, swimming pool))					
Number of showers		Heat-up time				min
Demand period	min	·		,		min
DHW demand/shower (40 °C)	l/min					
Commercial enterprises						
Number of employees	Activity		Slightly dirty	Mode	rately	Very dirty
Trained of employees	7 touvity		ongridy dirty	dirty	Latory	_ vory unity
Consumption point		DHW volume (l/min)		Numbe	er
Washbasins with tap			8.50			
Washbasins with spray head			4.50			
Circular communal washbasin for 6 people			20.00			
Circular communal washbasin for 10 people			25.00			
Shower unit without changing cubicle			9.50			
Shower unit with changing cubicle			9.50			
Demand period						Hours
Heat-up time						Hours
4. Selected DHW cylinder						
Vitocell 100, type:						
Vitocell 300, type:						

Appendix (cont.)

8.2 Checklist for heat exchanger enquiries/sizing

Intended use: Water/water

System separation, underfloor heating system			
System separation, district heating system			
DHW heating			
Other:			
System temperatures			
Primary		Secondary	
Inlet	°C	Inlet	°C
Outlet	°C	Outlet	°C
Output	kW		
Limits (e.g. max.)			
Pressure drop			
Primary	mbar	Secondary	mbaı
	kPa		kPa
Limits			
Pressure stages	bar		
	MPa		
Limits	·		
Temperatures	°C		
Special conditions?			
Specification of heat exchanger type			
System separation, underfloor heating system			
System separation, district heating system			

Appendix (cont.)

8.3 Checklist for heat exchanger enquiries/sizing

Intended use: Steam/water

System separation, district heating system			
Other:			
Saturated steam pressure/system temperatures			
Primary		Secondary	
Steam pressure	bar	Inlet	°C
	MPa		
Condensate outlet	°C	Outlet	°C
Output	kW		
Limits (e.g. max.)			
Pressure drop			
Primary	mbar	Secondary	mbai
	kPa		kPa
Limits		•	
Pressure stages	bar		
	MPa		
Limits	,	,	
Temperatures	°C		
Special conditions?			
Specification of heat exchanger type			
Tubular heat exchanger			
Vertical			
Horizontal (Viessmann only supplies vertical version)			

DHW heating

Keyword index

B Boiler supplement Zk	17
C	
Calculation of the cylinder loading system	31
Checklist for heat exchanger enquiries/sizing	
Circulation pump for cylinder heating, sizing	
Cylinder loading system, calculation	
Cylinder loading system, function description	
Cylinder loading system installation	
Cylinder loading systems	
, , , , , , , , , , , , , , , , , , , ,	
D	
Demand factor N, calculating	15
DHW circulation pipes	
DHW circulation pipe with cylinder banks	38
DHW demand in commercial enterprises	
DHW demand in commercial saunas	19
DHW demand in hotels, guest houses and residential homes	18
DHW demand in residential buildings	14
DHW demand in sports halls	
DHW side connection	
DHW side connection in accordance with DIN 1988	
DHW side connection of cylinder banks	
DHW side connection of the Vitotrans 222	
DIN 4708-2	
Drain valve	
Draw-off demand	
Drinking water filter	33
E	
EDIS calculation program	14
F	
Flow regulating valve	
Freshwater module	3, 22
H	
Heat demand - For DHW in commercial enterprises	40
For DHW in commercial saunas	
For DHW in hotels, guest houses and residential homes	
For DHW in residential buildings	
For DHW in sports halls	
Heating output, calculating	
Heating side connection	
Heating vater flow rate calculation	
ricating water now rate calculation	24
Heating water side flow rate calculation	
Heating water side, flow rate calculation	26
Heating water side, pressure drop calculation	26 24
	26 24
Heating water side, pressure drop calculation	26 24
Heating water side, pressure drop calculation	26 24 9, 21
Heating water side, pressure drop calculation	26 24 9, 21 44
Heating water side, pressure drop calculation	26 24 9, 21 44
Heating water side, pressure drop calculation	26 24 9, 21 44
Heating water side, pressure drop calculation	26 24 9, 21 44 33
Heating water side, pressure drop calculation	26 24 9, 21 44 33
Heating water side, pressure drop calculation	26 24 9, 21 44 33
Heating water side, pressure drop calculation	26 24 9, 21 44 33
Heating water side, pressure drop calculation	26 24 9, 21 44 33
Heating water side, pressure drop calculation	26 24 9, 21 44 33
Heating water side, pressure drop calculation	26 24 9, 21 44 33
Heating water side, pressure drop calculation	26 24 44 33 33
Heating water side, pressure drop calculation	26 24 9, 21 44 33 33
Heating water side, pressure drop calculation	26 24 9, 21 44 33 33 33
Heating water side, pressure drop calculation	26 24 33 33 33 33 7
Heating water side, pressure drop calculation	26 24 33 33 33 33 7
Heating water side, pressure drop calculation	26 24 33 33 33 33 7

N .	
Return temperature limit	42
S	
_	22
Safety valve	
Selection diagrams, DHW cylinder	8, 9, 11
Selection of DHW cylinder	
- According to continuous output	13
- According to demand factor N	8
Shut-off valves	33
Sizing	
- According to continuous output	24
- According to peak flow rate	22
Sizing DHW cylinders	
Sizing of DHW cylinders, questionnaire	
V	
Vitotrans 353	.7, 13, 22

5414646

Subject to technical modifications.

Viessmann Werke GmbH & Co. KG D-35107 Allendorf Telephone: +49 6452 70-0 Fax: +49 6452 70-2780 www.viessmann.com

Viessmann Limited Hortonwood 30, Telford Shropshire, TF1 7YP, GB Telephone: +44 1952 675000 Fax: +44 1952 675040 Telephone: +44 1952 675000 Fax: +44 1952 675040 E-mail: info-uk@viessmann.com